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Glycosylation is a frequent post-translationalmodificationwhich results in the addition of carbohydrate determi-
nants, “glycans”, to cell surface proteins and lipids. These glycan structures form the “glycome” and play an inte-
gral role in cell–cell and cell–matrix interactions through modulation of adhesion and cell trafficking.
Glycosylation is increasingly recognized as amodulator of themalignant phenotype of cancer cells, where the in-
teraction between cells and the tumor micro-environment is altered to facilitate processes such as drug resis-
tance and metastasis. Changes in glycosylation of cell surface adhesion molecules such as selectin ligands,
integrins and mucins have been implicated in the pathogenesis of several solid and hematological malignancies,
often with prognostic implications. In this review we focus on the functional significance of alterations in cancer
cell glycosylation, in terms of cell adhesion, trafficking and the metastatic cascade and provide insights into the
prognostic and therapeutic implications of recent findings in this fast-evolving niche.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Physiological role of glycosylation

Glycosylation is a post-translational modification that occurs in the
endoplasmic reticulum (ER) and results in the addition of carbohydrate
motifs, “glycans”, to proteins and lipids that are, in most cases, destined
for the cell surface. The resultant “glycoprotein” or “glycolipid” struc-
tures at the cell surface form a carbohydrate rich layer which plays an
integral role in the interaction of the cell with its surrounding environ-
ment. Of the more than 200 different types of protein PTMs, glycosyla-
tion occurs frequently and results in the addition of functional
carbohydrate motifs to protein structures [1,2]. Glycans interact with
carbohydrate binding proteins known as “lectins” that are specific for
glycanmoieties and are commonly used in purified form to study glyco-
sylation in-vitro. One of themain functions of lectins inmammalian cells
National University of Ireland,
353 91 720 115; fax: +353 91

.V. Glavey),
R_Reagan@DFCI.HARVARD.EDU
Manier),
tta),
_Roccaro@dfci.harvard.edu
brial),
galway.ie (M.E. O'Dwyer).
is to mediate cell–cell interactions and therefore interactions of glycans
with their respective lectins have major implications for cell trafficking.

Glycosylation of a given protein is achieved through a complex series
of post-translational enzymatic steps that lead to the formation of
protein-bound glycans with specific and diverse biological functions.
These carbohydrate side chains are capable of modulating the interac-
tion of the protein with its environment influencing key factors such
as protein half-life, solubility, binding activity and specificity. Proteins
with the same amino acid sequence can possess different glycan struc-
tures, producing different glycoforms of the same protein. These
glycoforms can differ in key properties such as stability, folding, localiza-
tion and ligand specificity [3] with consequent implications for physio-
logical processes, including protein folding and trafficking, cell–cell and
cell–matrix interactions, cellular differentiation and the immune re-
sponse [4–6]. Therefore, the glycosylation status of a protein can be
used to differentiate protein glycoforms and molecular changes in
glycosylation of proteins have been used to distinguish normal from
disease states in humans [7,8]. Furthermore, as cell communication, ad-
hesion, and signaling also play a major role in cancer, changes in glyco-
sylation of surface proteins on malignant cells can alter interactions
between cancer cells and their surrounding environment [6,9–11].

Glycosyltransferases are enzymes that regulate the process of glyco-
sylation in humans where their action is dependent on the availability
of precursor monosaccharide molecules and other parameters [12,13].
Glycosyltransferases, along with glycosidases, work to add and subtract
monosaccharides to and from glycan structures, examples of these
enzymes include sialyltransferases and fucosyltransferases, which are
responsible for the addition of sialic acid and fucose moieties,
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respectively. The intracellular sites of action of these enzymes include
the ER, golgi apparatus, cytosol and nucleus.

Twomajor types of glycosylation occur on proteins; 1) O-linked gly-
cosylation refers to the addition of N-acetyl-galactosamine to serine or
threonine residues by the enzyme UDP-N-acetyl-D-galactosamine
transferase, this is then followed by the addition of other carbohydrates
such as galactose, N-acetyl-D-glucosamine or sialic acid (Fig. 1).;
2) N-linked glycosylation occurs in the ER and refers to the process by
which an oligosaccharide chain is enzymatically attached to the amide
group of an asparagine in the consensus sequence Asn-X-Ser/Thr
where X represents any residue except proline (Fig. 1). This sequence
can be used to identify potential N-glycosylation sites in peptide
sequences.

O-linked glycosylation also contributes to the production of proteo-
glycans by the addition of glycosaminoglycan (GAG) chains to a core
protein. GAGs consist of repeating disaccharide units composed of an
N-acetylated or N-sulfated hexosamine and either a uronic acid (glucu-
ronic acid or iduronic acid) or a galactose. Examples of GAGs include
hyaluronan, dermatan sulfate, keratan sulfate, chondroitin sulfate, hep-
arin, and heparan sulfate. Heparan and chondroitin sulfate are linked to
serine residues of core proteins by xylose and this process is mediated
by a xylosyltransferase. Proteoglycans and their associated GAGs form
essential components of the extracellular matrix where they function
in cell adhesion via interactions between the complex carbohydrate
motifs [14].

It is clear that alterations in gene expression and protein expression
are not the sole factors responsible for phenotype determination in can-
cer cells, where not only the cell itself is affected, but also the microen-
vironmental components such as the extracellular matrix (ECM). The
impact of post-translational modifications (PTMs) on proteins and
lipids has identified a layer of complexity, beyond the amino acid se-
quence, which has the consequence of greatly altering the function
and even the purpose of that protein in a given context. Although the
protein sequence is governed by the relevant genomic code,manyprop-
erties of functional cell surface proteins, and circulating glycoproteins,
are governed by themodification of glycans and therefore consideration
must be given to the glycosylation status of a protein when considering
its activity within a biological system.

This rapidly developing field has provided new cancer biomarkers
and potential targets recently in a variety of solid and hematological
cancers [15–17]. In this review we focus on the enzymes involved in
Fig. 1.O- and N-linked protein glycosylation. A–C: N-linked glycosylation; A— bisecting GlcNAc
shown is alpha 2, 3 sialylated glycan.
this process and the cell surface proteins that become modified as a re-
sult of their action,with an overall focus on the implications for cell traf-
ficking and metastasis of cancer cells.

2. Carbohydrates and the cancer cell

2.1. Glycosylation and cancer

The normal process of glycosylation is disrupted during malignant
transformation of cells [18,19]. These changes result in alterations in
tumor cell surface glycans and therefore interactions with endogenous
lectins are impacted, which influences the metastatic potential of the
tumor cells. Complex carbohydrate structures that can be found at-
tached to proteins and lipids on the surface of cancer cells have a
major influence on their phenotype and the interactions that they
have with the surrounding environment [20] (Fig. 2). In parallel with
the changes in glycosylation, expression and levels of carbohydrate-
binding proteins also change during malignant transformation leading
to altered overall presentation of glycans and their cognate receptors,
i.e., lectins.

Alterations in glycosylation of malignant cells can take a variety of
forms, including changes in the amount, linkage and acetylation of sialic
acids, and changes in the branching of N-glycans mediated by glycosyl-
transferases, alterations in expression of glycosaminoglycans such as
heparan sulfate, and altered glycosylation of mucins, which are heavily
glycosylated epithelial-derived proteins known to be implicated in cer-
tain cancers [14]. Studies of themechanisms bywhich alterations in gly-
cans are able to bring about changes in cancer cell biology have been
impeded by the complexity and heterogeneity of glycans, however re-
cent advances in glycomics, including glycogenome analysis, HPLC,
mass spectrometry and lectin profiling have facilitated comprehensive
characterization of the glycome of several tissues [21].

The mechanisms by which glycosylation changes mediate tumor
metastasis and invasion are mostly unknown, however roles of specific
cell surface glycoproteins and their carbohydrate motifs have emerged
and will be reviewed in the following sections.

2.2. Implications of glycosylation in cellular metastasis

Both solid and hematological malignancies begin the process of me-
tastasis from the primary niche by escaping to the systemic circulation,
, B— Tri-antennary glycan, C— Tetra-antennary glycan. D: O-linked glycosylation, example



Fig. 2. Presentation of glycans on cell surface proteins. Representative image of N- and
O-linked glycosylation on cell surface proteins, adding a layer of complexity composed
of glycan moieties.
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which is followed by extravasation to secondary sites and growth of
distant metastatic lesions. Altered cell surface glycosylation has been
implicated in this cascade where it supports tumorigenesis and metas-
tasis [22,23]. During the process of transformation, from a normal cell
to its malignant counterpart, cells acquire several mutations in proto-
oncogenes and tumor suppressor genes giving rise to an altered pheno-
type. However, changes also occur at the cell surface, which alter the
interaction of cancer cells with the surrounding environment, and facil-
itate participation in the multi-step process of metastasis. Alteration of
tumor-cell-surface glycosylation changes the extracellular “velcro”
layer and results in differential adhesive and invasive properties of
these cells. Cancer cells in the circulation extravasate into tissues and
form new metastatic niches using mechanisms that normally function
to recruit leucocytes to sites of inflammation and injury [24]. Adhesion
Fig. 3. Selectins interacting with glycosylated ligands at the surface of cancer cells during the p
followed by tethering and rolling of the cell on endothelium. B) Critical interaction between th
glycans on selectin ligands. C) Transendothelial migration of cancer cell allowing entry into the
molecules expressed on the surface of cancer cells play a crucial role
in metastasis and the ability of cancer cells to metastasize is largely de-
termined by their ability to interact with endothelium,which ismediat-
ed, at the initial phases, by integrins and selectins. Selectins are a family
of three transmembrane adhesion molecules that are expressed on the
surface of leukocytes (L-selectin), platelets (P-selectin) and vascular en-
dothelial cells (E and P-selectin) [25]. Selectins are expressed on endo-
thelial cells and interact with their ligands on cancer cells to play an
important role in initiating the metastatic process by regulating the
tethering and rolling of cancer cells to the vascular endothelium, a
pre-requisite for subsequent transendothelial migration across the ves-
sel wall (Fig. 3). The interaction of selectins with their ligands is greatly
influenced by glycosylation and some glycans such as sialyl Lewis X
(SLex) and sialyl Lewis A (SLea) play a critical role in E-selectin ligand
function. Integrins are large transmembrane glycoproteins that serve
as cell–cell adhesion molecules and are responsible for mediating the
interaction of cells with extracellular matrix (ECM) components such
as collagens, fibronectin and laminins. We focus in our review on four
important differentially glycosylated proteins in cancer; selectin li-
gands, integrins, mucins and galectins, and on the enzymes mediating
these changes with a view to implications for cell trafficking and
metastasis.

3. Targets of glycan modifications in cancer

3.1. Selectins

As previously mentioned, selectins are vascular cell adhesion mole-
cules which mediate adhesion of leukocytes and platelets with the
endothelium. There are three members of the selectin family: P-, E-,
and L-selectins. P-selectin is present in the storage granules of platelets
(α-granules) and endothelial cells (Weibel–Palade bodies), and rapidly
translocates to the cell surface upon activation [26]. L-selectin is
expressed on the surface of almost all leukocytes. The physiological
functions of selectins are well described in processes of immune re-
sponse inflammation, cell trafficking, and hemostasis [27] largely
through the study of specific selectin knockout mouse models.

L-Selectin mediates fast rolling of leukocytes on endothelium while
P- and E-selectin support the rolling at lower velocities within the vas-
culature [27]. The initial steps in cell migration involve tethering and
rocess of hematogenous metastasis. A) Cancer cell initial interaction with endothelial cells
e selectin ligand of a cancer cell and selectin on an endothelial cell mediated by sialylated
blood stream and hematogenous metastasis.
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rolling of cells on the vascular endothelium, which is mediated by the
interaction of selectins on the endothelial surface and their carbohy-
drate ligands. Structurally, selectin ligands consist of distinct glycan
structures, which incorporate the terminal core tetrasaccharide struc-
ture SLex and SLea on a protein backbone. Selectins can bind to various
classes of molecules including mucins, sulfated glycolipids and glycos-
aminoglycans, and most of these molecules are capable of acting as
functional selectin ligands in-vivo [26].

During the hematogenous phase of metastasis, selectin ligand-
expressing tumor cells commonly encounter selectins, present on leu-
kocytes, platelets and endothelium in the circulation [28,29]. Following
initial tethering rolling leukocytes are activated by binding to selectins
and by chemoattractants like CXCR4/SDF-1 the presence of a chemotac-
tic signal outside the venule induces leukocytes to extravasate.

Selectin-ligand glycosylation is modified by several glycosyl-
transferases that cooperate to form functional selectin ligands. These
include fucosyltransferases FucT-VII and FucT-IV [30,31], core 2 β1-
6-N-acetylglucosaminyltransferase-1, [32,33] and several of the
sialyltransferases [34,35]. SLe(x) is a tetrasaccharide carbohydrate
ligand that forms an essential component of selectin ligands as
mentioned previously, [35] and mediates the migration of healthy leu-
kocytes to sites of injury where they perform necessary immune func-
tions [36]. Tumor cells are able to hijack this normal mechanism of
cellular trafficking which enables them to gain efficient metastatic po-
tential. Higher levels of membrane associated SLex on cancer cells pro-
motes metastasis via this mechanism [37]. SLex can be found at the
non-reducing terminus of a glycan chain where structurally it contains
a Galβ1-4GlcNAc backbone. Attached to the Gal is a α2-3NeuAc and
the GlcNAc has aα1-3Fuc attached. SLex synthesis is initiated by adding
α2-3NeuAc to the Gal of N-acetyllactosamine; this reaction is catalyzed
by βgal:α2-3 sialyltransferases, of which there are several in humans
[38]. Following this, α1,3/4-fucosyltransferases catalyze the addition
of α1-3Fuc to the GlcNAc [39,40]. Once in place on a selectin ligand,
SLex determines binding specificity and directs functionality of various
selectin ligands; therefore alterations in this glycan structure have
major implications for cell trafficking and metastasis.

P-Selectin glycoprotein ligand-1 (PSGL-1) is the predominant
physiologic ligand for P-selectin and L-selectin, but when modified by
HECA-452 reactive glycans (CLA) it can also serve as an E-selectin ligand
[41,42]. PSGL-1 plays a role in leukocyte trafficking and PSGL-1
mediated rolling is a pre-requisite for integrin mediated firm adhesion
and PSGL-1 up-regulation in immune cells may be a mechanism of
enhanced migration [43]. Posttranslational modifications of PSGL-1
are important for optimal selectin binding [44]; to bind to P-selectin,
PSGL-1 requires an α 2,3-sialylated and α 1,3-fucosylated core 2
O-glycan attached to a specific N-terminal threonine with tyrosine
sulfation near the N-terminus optimizing the binding to P-selectin
[44–46]. To bind to E-selectin, PSGL-1 requires core 2 α 1,3-fucosylated
and α 2,3-sialylated O-glycans, indicating a crucial role for ST3GAL-VI
in the function of PSGL-1 as both an E and a P-selectin ligand [44,47].
PSGL-1 has previously been shown to regulate the adhesion andhoming
of MM cells to the bone marrow niche and regulates proliferation and
development of drug resistance in MM cells [48]. Furthermore PSGL-1
is critical for macrophage-mediated MM cell drug resistance [49], both
of these studies outline an important role for PSGL-1 in MM biology.

We believe that ST3GAL6-VI may be important in the generation
of E-selectin ligands, which mediate homing and retention of
MM cells in the bone marrow via interaction with E-selectin and hy-
pothesize that overcoming the interaction of E-selectin and its ligands
could be a useful chemosensitizing strategy in MM and AML. Both nor-
mal hematopoietic stem cells and cancer stem cells are known to ex-
press E-selectin ligands [50]. Recent data demonstrates that selectins
and their ligands are required for homing and engraftment of BCR-
ABL+ leukemic stem cells in the bone marrow niche and adhesion of
colon carcinoma cells to E selectin activates survival pathways, such as
NFκB [51,52].
3.2. Integrins

As mentioned, integrins are large complex transmembrane glyco-
proteins that act as cell adhesion molecules. The integrin family is
made up of 24 members comprises 24 members, that consist of a com-
bination of 1 of 18 α- and 1 of 8 β-subunits [53]. Integrins directly
bind components of the extracellularmatrix such as laminin,fibronectin
and collagen and themselves convey signals downstream, following
binding to extracellular ligands. This occurs via a variety of cell signaling
molecules such as focal adhesion kinase (FAK) and Src via activation of
kinases, GTPases and the Ras/Rho pathways [54]. Through thesemecha-
nisms integrins can modulate cell adhesion, migration and proliferation
and have therefore been extensively investigated in cancer. The
ubiquitous presence of integrins on tumor cells, blood components, vas-
culature, and stromal cells suggests that integrins contribute to the
metastatic cascade. In cancer, integrins display altered branching of
N-glycans, mediated by N-acetylglucosaminyltransferase III (GnT-III)
and N-acetylglucosaminyltransferase V (GnT-V). Typically integrin gly-
cosylation by GnT III inhibits cell migration while integrins glycosylated
by GnT-V promote cell migration [55]. In colorectal cancer, alterations to
the N-glycan branching of integrins have been shown to contribute to a
more invasive phenotype [56]. The modification of integrin-associated
glycans can also bemediated by sialyltransferases, which has been dem-
onstrated in pancreatic cancer where ST3GAL-III transfected cells exhib-
ited higher SLex and lower α2,6-sialic acid content on the glycans of
their α2β1 integrin molecules and higher adhesive potential [57].
Therefore, it is clear that altered integrin glycosylation has major impli-
cations for cell adhesion andmetastatic potential, making this an impor-
tant focus of glycosylation research in cancer.

3.3. Mucins

Mucins are large glycoproteins with a “bottle-brush” like conforma-
tion, which carrymany clustered glycosylated serines and threonines in
tandem repeat regions. The human mucin family (MUC) consists of 21
mucins (MUC1 — 21) that are further classified as secreted or trans-
membrane mucins and can be found expressed on normal and malig-
nant epithelial cells [58,59]. In normal tissues, mucins serve to protect
cells from the microenvironment by formation of a protective layer
[37]. Mucins are aberrantly expressed in many cancers where they dis-
play differential patterns of glycosylation and many cancer-associated
mucins (and their glycans) serve as circulating biomarkers with clinical
utility [60]. Specific O-glycans that are associated withmucins in cancer
include the carbohydrate antigens Tn (GalNAcα1-O-Ser/Thr), STn
(NeuAcα2-6GalNAcα1-O-Ser/Thr), and T (Galβ1-3GalNAcα1-O-Ser/
Thr) [61,62]. Aberrant glycosylation of mucins is a common feature of
all adenocarcinomas and tumor cells are known to express mucins
that are associated with the epithelium from which they are derived,
alongside new cancer-associated mucin core structures and glycan
structures [63]. Mucins are generally found to be expressed on the api-
cal domain of epithelium with soluble mucins being secreted into the
lumen. During malignant transformation there is disarray of correct
mucin expression on endothelial cells which allows soluble mucins to
enter the extracellular space and circulation [14]. Due to their circulat-
ing nature and because they can be detected bymonoclonal antibodies,
mucins have been proposed as prognostic and diagnostic markers in
several cancers including the well known markers CA-125 and CA19-
9. In cancers of epithelial origin in particular, mucins appear to be the
major carriers of altered glycosylation [14].

It is likely that cancer cells alter their mucin expression in order to
allow them to interact appropriatelywith the tumormicroenvironment
and enhance survival signaling. SLex can be considered a mucin glycan
as it is frequently associated with mucins and, as mentioned, it has
been demonstrated in colonic carcinoma cell lines that 5-Aza-2′-
deoxycytidine (5-Aza) treatment enhances SLex production on the
mucin MUC1 by inducing the expression of ST3 β-galactoside α-2,3-
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sialyltransferase 6 (ST3GAL-VI) [64]. 5-Aza is an inhibitor of DNAmeth-
yltransferase which leads to DNA hypomethylation, weakening the ef-
fects of natural gene silencing mechanisms. Following treatment, the
colonic carcinoma cell line also showed a corresponding increase in
the adherence of these cells to E-selectin under dynamic flow condi-
tions. Knockdown of ST3GAL-VI in these cells reduced the level of SLex

without affecting MUC1 expression. This points towards hypomethyla-
tion as a mechanism of regulation of ST3GAL-VI and consequently SLex

expression on mucins [64].
In pancreatic cancer, differential glycosylation of mucins MUC1 and

MUC4 is apparent as the disease progresses from early adenocarcinoma
to the metastatic state and MUC1 has been shown to induce multidrug
resistance gene expression [65–67]. Tn and STn are highly expressed in
the pancreatic cancer tissue however, STn antigen on MUC1 is associat-
ed with themalignant statewhereas Tn onMUC1 is observed in normal
pancreatic ductal cells [67]. The presence of high levels of Tn and STn
structures on cancer cells is well described and may in part be due to
mutations in the Cosmc protein [68,69], the core 1 synthase enzyme
or as previously stated any of the enzymes involved in O-glycan exten-
sion. Cosmc is a chaperone protein that is necessary for core 1 activity
and consequently the extension of Tn glycan into core 1 or core 2 struc-
tures, including the T antigen [67]. It has recently been demonstrated
that glycan elongation beyond the mucin-associated Tn antigen in pan-
creatic and breast cancer protects cancer cells from immune mediated
killing by natural killer (NK) and T-cells, indicating that alterations in
glycosylation can mediate cancer cell immune escape [70]. It has previ-
ously been shown that the extracellular portion of MUC1 binds to pro-
tumorigenic factors such as Galectin-3 [71]; this interaction likely influ-
ences downstream signaling events as the cytoplasmic tail of MUC1 in-
teracts with a number of receptor tyrosine kinases. MUC4 associates
with the ErbB2 receptor to affect proliferation, apoptosis and epithelial
mesenchymal transition (EMT) in cancer cells [72–74].

Therefore, it stands that differential glycosylation of mucins has a
broad array of effects on the cancer cell glycome itself but also on im-
mune escape of cancer cells, survival and proliferation.

3.4. Galectins

Galectins are a family of 15 immunoregulatory lectins which bind to
galactose that is either β1,3 or β1,4 linked to N-acetylglucosamine [63].
Galectins are soluble proteins with both intracellular and extracellular
functions and are expressed by a wide variety of cells including epithe-
lial and immune cells where they are bound to proteins by both
N-linked and O-linked glycosylation. They have a broad range of func-
tion including the mediation of cell–cell interaction, cell–matrix adhe-
sion, apoptosis regulation and supression of T-cell receptor activation
[75,76].

Several studies point towards a role for galectins in regulating cancer
cell functions such as adhesion, invasion and metastasis [77,78].
Galectin-3 has been extensively implicated in several cancers where
its presence on cancer cells themselves or on endothelial cells can
help to promote adhesion and metastasis [79,80]. In colon cancer cells,
homotypic interactions between Galectin-3 and MUC1, both present
on the cell surface, increase the survival of tumor cells and promote
embolism formation and dissemination of tumor cells [79]. Similar
homotypic interactions, mediated by Galectin-3, are also observed in
highly metastatic breast cancer cells [80]. These and other studies high-
light the interplay of cancer glycome components in promoting metas-
tasis through glycan specific interactions. Galectin-3 has also been
found to be highly expressed in Diffuse Large B Cell Lymphoma
(DLBCL) [81] where the expression has been linked to a poor outcome
for patients [82]. Galectin-3 is also aberrantly expressed in many other
types of cancer where it has been shown to mediate apoptosis, possibly
via BCL-2 and in leukemia cells increased Galectin-3 facilitates survival
via stabilization anti-apoptotic BCL-2 family members [83,84]. Further-
more, the gene encoding Galectin-3, LGALS3, is upregulated in acute
myeloid leukemia where it has been shown to be independently associ-
ated with an unfavorable outcome in these patients [85].

Galectin-1 has also been reported to promote tumor growth by in-
ducing apoptosis of tumor responsive activated T-cells following glycan
specific binding to CD45 or CD43 on T-cells [63,86,87].

Galectins have been targeted in cancer using modified citrus pectins
(MCP)which are complex carbohydrates capable of combiningwith the
carbohydrate-binding domain of Galectin-3 [88]. In multiple myeloma
one of these compounds was able to induce apoptosis in various multi-
ple myeloma cell lines, including those resistant to dexamethasone,
melphalan, or doxorubicin. Interestingly this compound was able to
overcome the growth advantage conferred by antiapoptotic protein
Bcl-2, heat shock protein-27, and nuclear factor-κB, and blocks vascular
endothelial growth factor-induced migration of multiple myeloma cells
[89]. This same compound has recently been found capable of removing
cell-surface Galectin-3 from CD45 rendering DLBCL cells susceptible to
chemotherapeutic agents. This was shown to be regulated by C2GnT-1
glycosyltransferase [90]. The need for the development of Galectins,
particularly Galectin-3 is apparent and efforts to address this unmet
need in cancer are underway [91].
4. Glycosyltransferases: mediators of carbohydrate modifications
in cancer

Glycosyltransferases are a large and diverse family of enzymes that
are responsible for the assembly of monosaccharidemoieties into linear
and branched glycan chains. These enzymes tend to act sequentially so
that the product of one enzyme prepares its acceptor as the substrate of
the next enzyme in the process. Glycosyltransferases are specific for the
type of linkage (α or β), and the linkage position of the glycoside bond
formed [e.g. α(1 → 3) or β(1 → 4)]. Glycosyltransferases were initially
considered to be specific for a single glycosyl donor and acceptor,
which led to the “one enzyme-one linkage” concept [92]. Subsequent
observations have refuted the theory of absolute enzymatic specificity
by describing the transfer of analogs of some nucleoside mono- or di-
phosphate sugar donors and it is now clear that some glycans may
be assembled by the action of any one of a number of highly related
transferases [93]. Sugar nucleotide donors for glycosyltransferases in
humans are: UDP-glucose, UDP-galactose,UDP-GlcNAc, UDP-GalNAc,
UDP-xylose, UDP-glucuronic acid, GDP-mannose, GDP-fucose, and
CMP-sialic acid.

As mentioned previously N-linked glycosylation begins in the ER
with the synthesis of dolichol-linked GlcNAc sugar which is then con-
structed into a precursor oligosaccharide and extended to a precursor
glycan by the additions of 2 GlcNAc, 9mannose and 3 glucosemolecules
(Dolichol-GlcNAc2-Man9-Glc3). The precursor glycan is transported to a
protein in the lumen of the ER where an oligosaccharyltransferase
recognizes the consensus sequence (Asn-X-Ser or Asn-X-Thr) of the
polypeptide acceptor. The glycan is further processed in the ER by glyco-
sidases I and II and a series of mannosidases. Following this glycosyl-
transferases add sugar residues to the core glycan structure, giving rise
to the three main types of N-glycans (Fig. 1).

While N-glycosylation is the most common glycosidic linkage,
O-glycosylation also plays a key role in cancer biology, as previously
highlighted. Mucin synthesis requires O-glycosylation it is also critical
for the formation of proteoglycan core proteins that are important
components of the extracellular matrix. The linkage mechanism in-
volved in O-glycosylation is not as complex as that of N-glycosylation
and O-glycosylation also differs in that glycans are added one-at-a-
time to serine or threonine residues. Proteins are O-glycosylated in the
Golgi by N-acetylgalactosamine (GalNAc) transferase, which transfers
a single GalNAc residue to the β-OH group of serine or threonine.
Proteins can also undergo O-glycosylation with GlcNAc, fucose, xylose,
galactose or mannose, depending on the cell and species. As with
N-glycosylation, sugar nucleotides serve as monosaccharide donors for
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O-glycosylationwhich then continues as various sugars are added to the
growing glycan chain [13,94].

Common categories of changes in N and O-linked glycosylation oc-
curring in cancer and specific glycosyltransferases involved are covered
in the below sections.

4.1. Altered branching and truncation of glycans in cancer

An important example of the action of glycosyltransferases in cancer
is in relation to the branching of N-glycans on the surface of cancer cells.
An increase in the size of N-glycans on the surface of cancer cells has
been attributed to an increase in β1-6 branching of N-glycans that re-
sults from enhanced expression of GnT-V. This glycosyltransferase is
coded on MGAT5 and this gene is induced in cancer transformation in
several cancers, including hepatocellular cancer (HCC) [95]. Cell lines
with increased GnT-V expression show an increased frequency of me-
tastasis in animal models and when this enzyme is lost cells lose this
metastatic phenotype [96,97]. Breast cancer tumor development and
metastasis has been shown to be significantly less in MGAT-5 deficient
mice and the absence of MGAT-5 has been shown to induce the activa-
tion of phosphatidylinositol 3 kinase (PI3K) [98]. Integrins were identi-
fied in this study as specific major target glycoproteins of MGAT-5.
MGAT-5 is currently being evaluated as a potential glyco-target and a
compound that partially blocks MGAT-5, by diverting the biosynthesis
pathway upstream of the enzyme, has shown activity against breast
cancer in mice [98]. Furthermore, Ma and colleagues demonstrated
that inhibiting MGAT-5 expression in a murine breast cancer cell line
significantly reduced breast cancer cell proliferation following a reduc-
tion in complex surface N-glycans which translated to reduced tumor
progression in-vitro and in-vivo [99]. Although it has beendemonstrated
in several models that MGAT-5 knockout can reduce tumor growth and
metastasis in-vitro and in-vivo the mechanism has not been fully de-
fined. Morgan et al. proposed that MGAT5-5 mediated N-glycosylation
negatively regulates Th1 cytokine production [100].

There is also some evidence thatMGAT-5 can affect integrin stability
directly through modification of glycans. This was demonstrated in a
study by Wang et al. [101] that showed attenuation of the number of
β1-6 GlcNAc branching structures on β1 integrin in MGAT-5-inactive-
mutant transfected hepatocellular cancer cell lines. Interestingly, there
was a decreased β1 integrin expression in the inactive-mutant
transfected cell line despite no significant change in the mRNA level,
suggesting that the presence of β1-6 GlcNAc branching contributed to
the expression of a more mature and stably expressed form of β1
integrin and as a functional consequencewasmore effective in promot-
ing cell migration to fibronectin. MGAT-5 may also regulate expression
of cytokine receptors as reported by Partridge et al. [102] who demon-
strated that the expression of MGAT-5 sensitized mouse cells to multi-
ple cytokines through promoting the substitution of N-glycan with
N-acetyllactosamine, the preferred ligand for Galectin-3. In this case
MGAT-5 was shown to be rate limiting factor for cytokine signaling
and consequently for epithelial mesenchymal transition, cell motility
and tumor metastasis [102].

Since certain glycan signatures can be linked tomalignancy andme-
tastasis, efforts have been made to assess the glycan profile of drug and
chemotherapy resistant cancer cells. HT-29 colon cancer cells have been
shown to have higher levels of α 2,3 and α 2,6 sialylated structures
when methotrexate resistance develops [103]. Various techniques
have been employed to evaluate the cell surface glycan profile of thera-
py resistant cancer cells ranging from lectin binding studies to mass
spectrometry. Down regulation of MGAT-5 has been shown to enhance
chemosensitivity in breast cancer [99] and deglycosylation with
PNGase-F which cleaves N-linked glycans from the proximal GlcNAc
residue also produced a similar effect. The glycan products of MGAT-5
act as tumor-associated glycan markers and they are commonly
increased in a variety of malignancies where levels have been shown
to correlate with disease progression [104–106]. Also, β1-6 branched
oligosaccharides have been shown to be increased in breast cancer,
as demonstrated by phaseolus vulgaris lectin-L (PHA-L) binding.
PHA-L recognizes and binds specifically to terminal galactose,
N-acetylglucosamine and mannose residues of complex glycans on
mammalian glycoproteins, and in this studywas shown to be predictive
of a worse outcome [107].

Altered truncation of glycans in cancer is not restricted to N-linked
glycans. Truncation O-linked glycans such as T, Tn, sT, Tn on mucins of
epithelial cancers, such as breast ovarian and colorectal cancer, has
also been noted [108–111]. Increased expression of sTn antigen in
these cancers has been proposed as a biomarker due to its association
with inferior outcomes in these cancers [112,113].

4.2. Sialyltransferases

Sialyltransferases are enzymes that transfer sialic acid from the acti-
vated cytidine 5′-monophospho-N-acetylneuraminic acid (CMP-NeuAc)
to terminal positions on sialylated glycolipids (gangliosides) or to the
N- or O-linked sugar chains of glycoproteins (Fig. 1). Sialyltransferases
belong to glycosyltransferase family with 29 members which comprises
enzymes that can be classified according to the Carbohydrate-Active en-
ZYmes system (http://www.cazy.org) sialyltransferase; β-galactosideα-
2,6-sialyltransferase;α-N-acetylgalactosaminideα-2,6-sialyltransferase;
β-galactoside α-2,3-sialyltransferase; N-acetyllactosaminide α-2,3-
sialyltransferase; (α-N-acetyl-neuraminyl-2,3-β-galactosyl-1,3)-N-
acetylgalactosaminide α-2,6-sialyltransferase; α-N-acetyl-neuraminide
α-2,8-sialyltransferase; lactosylceramide α-2,3-sialyltransferase.

Sialyltransferases have been shown to be aberrantly expressed in
several cancer models, most prominently reported in the literature are
ST3GAL-I and ST3GAL-IV and ST3GAL-VI [114–116], additionally, our
group has recently reported a role for ST3GAL-VI in migration and traf-
ficking of multiple myeloma cells in-vitro and in-vivo [117]. Moreover,
we showed that high levels of expression of ST3GAL-VI were indepen-
dently associated with reduced survival in patients treated on the
MRCMyelomaXI study [117]. As previouslymentioned, aberrant glyco-
sylation is a recurring theme in breast cancer and consequently
O-linked glycosylation has been extensively studied in this disease
and sialylated core 1 chains are reported to be expressed at higher
levels on breast cancer cells than in their normal mammary counter-
parts, where core 2 based O-linked glycans predominate [114]. This
has been attributed to the over-expression of ST3GAL-I [118,119].
ST3GAL-I is upregulated by COX-2 in breast cancer and this is mediated
via PGE2 [114]. COX-2 has been implicated in the induction of several
malignancies [120,121]where it may also be exerting its effect via alter-
ations in glycosylation. A previous study by this group demonstrated
that spontaneous Polyoma virus middle T antigen (PyMT) induced
mammary tumors developed earlier when human ST3GAL-I was
expressed as a transgene driven by the MUC1 promoter to ensure ex-
pression of the sialyltransferase in the mammary gland [122].

One mechanism by which sialyltransferases may contribute to
an enhanced metastatic phenotype in cancer cells is via the generation
of SLex, which is known to serve as a selectin ligand and therefore
has implications in the interaction of endothelial selectins with their
ligands on the surface of cancer cells. Treatment of neutrophils with
sialidases has produced evidence that sialic acidsmay play an important
role in selectin ligand function [34,123]. There are six different
sialyltransferases present in mammals that have the ability to generate
α 2–3 sialic acid linkages on glycoproteins and glycolipids, all of which
could therefore theoretically contribute to the generation of SLex and be
implicated in the malignant phenotype of cells [124]. Sperandio and
colleagues have demonstrated that ST3GAL-IV-deficient mice have a
defect in selectin ligand function in-vivo, including a mild reduction in
E-selectin-dependent rolling, an increase in E-selectin-dependent
rolling velocity, and a decrease in L-selectin-dependent rolling during
inflammation, which relies on P-selectin glycoprotein ligand-1 PSGL-1,
the predominant selectin ligand expressed on leukocytes [34,35]. It

http://www.cazy.org
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was noted that ST3GAL-IV deficiency alone does not account for the full
contribution of sialyltransferases to selectin ligand synthesis and in-vivo
studies were carried out to further evaluate this. ST3GAL-VI deficient
and ST3GAL-IV/VI double-deficient mice were found to have a deficien-
cy in P-selectin mediated leukocyte rolling in an ex-vivo chamber sys-
tem. This was seen in the leukocytes from ST3GAL-VI deficient mice
and was more pronounced in the double deficient mice where it was
equivalent to that of sialidase treated leukocytes. Themost pronounced
effect of ST3GAL-VI function was apparent in P-selectin ligand forma-
tion. Neutrophil recruitment into the inflamed peritoneal cavity and
lymphocyte homing to secondary lymphoid organs were impaired in
ST3GAL-VI-null mice and more severely in double-deficient mice
[124]. This provided the first evidence of a coordinated role for these
sialyltransferases in selectin ligand synthesis. Through a coordinated
process these enzymes work to generate SLex or its sulfated form,
6-sulfo-SLex on glycoproteins or glycolipids with binding activity to
selectins [125]. The absence of one or more of these enzymes can alter
leukocyte rolling with implications for cancer cell adhesion, homing
and metastasis. Our group has demonstrated that in multiple myeloma,
a cancer demonstrating widespread cell trafficking at diagnosis, knock-
down of ST3GAL-VI, which is expressed at high levels at themRNA level
in cell lines and patients, results in reduced adhesion and trans-
endothelial migration of multiple myeloma cells in-vitro alongside a re-
duction in bonemarrow homing in-vivo resulting in prolonged survival
of xenograft mice [117]. This provides evidence of functional conse-
quences of alterations in cell surface glycosylation in multiple myeloma
cells, where α 2,3 sialylation may participate in selectin ligand forma-
tion and therefore impact cellular trafficking and metastasis.

The enhanced expression of carbohydrate ligands such as SLex is
well established in several cancer models but the molecular mecha-
nisms that lead to this are not well understood. Evidence is accumulat-
ing indicating an interaction between epigenomics and alterations in
the human glycome [126], for example the accumulation of SLex in
colon cancer cells may be as a result of DNA hypomethylation [64]. It
is likely however that this cannot explain the diversity of changes
seen in the carbohydrate determinants on cancer-associated ligands.
Another interesting proposed mechanism relates to alterations in
sugar transportation and intermediate carbohydrate metabolism. Can-
cer cells exhibit a metabolic shift from oxidative to anerobic glycolysis,
this is known as the Warburg effect, which corresponds to increased
gene expression of sugar transporters and glycolytic enzymes in cancer
cells. These changes have been recently linked to induction of genes re-
lated to the expression of SLex in cancer [127]. This includes ST3GAL-I
and Fuc-T VII, which are induced when colon cancer cells are grown
under hypoxic conditions; interestingly this is believed to be mediated
by hypoxia inducible factor (HIF) [128]. This leads to higher expression
of SLex and SLea on cancer cells and is likely to at least partially explain
the increased SLex determinant expression seen in some cancers which
was accompanied, in this study, by a concomitant increase in E-selectin
binding activity. This process refers to the “neosynthesis” hypothesis re-
lated to the mechanism of enhanced expression of carbohydrate deter-
minants of selectin ligands in cancers [129,130]. This was further
examined in a study looking at the association between SLex and SLea

expression on colon cancer cells and EMT. The induction of EMT was
shown to increase SLex and SLea expression and enhance E-selectin
binding. In this study transcript levels of ST3GA-I/III/IV and FUT-III
were significantly elevated and found to be regulated by c-Myc. This
study outlines the role of SLex and SLea expression inmediating selectin
binding during EMT [131].

4.3. Fucosyltransferases

Fucosyltransferases are a family of enzymes that transfer L-fucose
sugar from a GDP-fucose (guanosine diphosphate-fucose) donor
substrate to an acceptor substrate, such as core GlcNAc (N-acetyl-
glucosamine) sugar, in the case of N-linked glycosylation, or to
a protein, in the case of O-linked glycosylation produced by
O-fucosyltransferase. Along with having sialic acid as its terminal
sugar SLex also has fucose which is regulated by FUTI-VII and FUT-IX
[132,133]. So it stands, as for sialic acid, that manipulation of the fucose
may influence selectin ligand synthesis and interactions in a similar
manner to that of sialic acid; indeed this has been shown to be the
case in several cancer models. In colon cancer SLex expression is not
only regulated by sialyltransferases but has also been shown to be reg-
ulated by the fucosyltransferases such as FUT-VI and FUTIII. Inhibition of
FUT-III in colon cancer inhibits selectinmediated adhesion andmetasta-
sis [134] and Fuc-TVI knockdown is associated with a reduction in SLex

expression in colon cancer cell lines [135]. Zandberg and colleagues
adopted an interesting metabolic engineering strategy to inhibit the
biosynthesis of SLex in cancer cells using peracetylated 5-thio-L-fucose.
Blockade of fucosyltransferases led to functionally significant impair-
ments in SLex levels and selectin mediated adhesion [136]. The
abovementioned fucosylation relates to the addition of fucose residues
to the N- and O-linked terminus in an α2,3 and/or 4 linkage pattern;
however the fucosylation of the core structure of N-glycans has also
been reported to be altered in cancer cells [133]. Core fucosylation is
carried out by FUT-VIII and has been found to be elevated in breast,
colon, ovarian and lung cancer [119,137–141]. The importance of the
fucosylation in the ability of cancer cells to migrate and metastasize
therefore appears to be mainly related to their role in the synthesis of
SLex and the implications of these changes for selectin ligands, targeting
altered fucosylation in cancer cells is therefore an attractive therapeutic
strategy given the importance of this process in cell adhesion and
trafficking.

5. Mechanisms of regulation of glycosylation changes in cancer

Although glycans have been shown to be extensively altered in can-
cer, themechanisms of regulation that govern the expression of the im-
plicated genes are not well understood. It is likely that the genetic
landscape of glycomics is not regulated by any one process but instead
is an interplay of many factors, made more complex in the malignant
state. However progress in this area is beingmade and evidence is accu-
mulating that these genes may be altered by hypoxic conditions in the
local microenvironment or may also be regulated by methylation.

5.1. Hypoxia and glycan expression

Under the poorly oxygenated conditions found in locally advanced
tumors, hypoxia-resistant cancer cells survive by acquiring hypoxia tol-
erability through the HIF transcription factor, the nuclear translocation
of which is facilitated by inactivation of tumor suppressors such as
VHL and p53 [14]. As mentioned above HIF induces transcription of sev-
eral genes for glycan synthesis, leading to the significant alteration of
glycan profiles, including enhanced sialyl Lewisx/a expression in cancer
cells [128].

Another very interesting study has also implicated hypoxia as a
determinant of glycogene expression in colon cancer. Koike and
colleagues demonstrated that hypoxic culture of colon cancer cells in-
duced a marked increase in expression of selectin ligands, the SLex

and SLea determinants at the cell surface, which led to a definite
increase in cancer cell adhesion to endothelial E-selectin. HIF was in-
creased in colon cancerwhere it induced transcription of four important
glycogenes — FucT-VII (FUT7), sialyltransferase ST3GAL1, and UDP-
galactose transporter-1 (UGT1), which are all known to be involved in
the synthesis of the carbohydrate ligands for E-selectin [128].

5.2. Hypermethylation

DNA methylation and histone deacetylation, the epigenetic mecha-
nisms for suppression of normal gene transcription commonly observed
in cancers, are proposed to underscore the aberrant expression of
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glycosylation related genes seen in some cancers [126]. As previously
mentioned, DNA hypomethylation leads to enhanced SLex production
on MUC1 rendering colon cancer cells more favorable to liver metasta-
sis. It has been shown that a change in cytosine methylation within
the promoter of certain glycosylation related genes is responsible for
the expression of cancer-associated carbohydrate antigens in gastroin-
testinal, colon, pancreatic, and breast cancer [142–144]. Further work
is needed to advance our understanding of the link between the cancer
glycome and epigenomics.

6. Clinical significance — diagnostics, prognostics and therapy

Given the large body of evidence that has accumulated to definitive-
ly implicate changes in glycosylation in the development and progres-
sion of certain cancers, there has been a focus on clinically applicable
glycan targeting for diagnostic and prognostic purposes [145]. To date,
this has taken the form of development of tumor-associated glycan
markers as diagnostic and prognostic tools alongside a large focus on
the development of vaccines in this area; however increasing attention
is being focused on harnessing glycan specific changes in cancer to im-
prove therapeutic strategies [20]. This has led to variable success due to
the inherent challenges faced when studying protein glycosylation re-
lated to the complexity and diversity of glycan structures and also, in
the past, due to lack of reliable high throughput tools for detailed glycan
analysis and profiling. An in-depth review of the technologies that are
available or becoming available to evaluate and develop these markers
is beyond the scope of this review, however there are several useful re-
views of this topic [12,20,145]. Themainstay of tools to study glycans re-
mains the use of lectins that have an affinity for specific carbohydrate
structures. Lectin basedmethods include immunohistochemistry, lectin
blots, liquid chromatography and lectin microarrays. Despite much
progress using lectins as analytical research tools, there has been an al-
most complete lack of clinically applicable high throughput tools to
quantify serological glycan biomarkers.

Although several of the well known “tumor markers” used clinically
are glycoproteins, it has only been in recent years that these have been
analyzed for more specific glycoforms to increase the sensitivity and
specificity of these tests. One such example is the identification of
altered PSA glycosylation patterns in prostate cancer that can help to
distinguish between significant and insignificant prostate tumors
[146]. Carbohydrate determinates on glycoproteins and glycolipids
have been shown in the past to serve as useful serum diagnostic and
prognostic markers in a variety of cancers. SLea is important in adhesion
of colon, rectal and pancreatic cancer cells to the endothelium while
SLex was found to play a role in adhesion of lung, breast and ovarian
cancer cells [127].

Recently, Becker and colleagues showed that themajority of primary
patient AML blasts and leukemia stem cells express an E-selectin ligand
[147]. E-selectin ligand expression appeared to be upregulated in re-
lapsed as compared to newly diagnosed patients. A glycomimetic selec-
tive E-selectin inhibitor, GMI-1271, was able to overcome adhesion
mediated chemotherapy resistance of AML in-vitro and reduce the leu-
kemia burden of primary AML engrafted NODscid IL2Rgc−/− mice in
combination with chemotherapy agents daunorubicin and cytarabine.
They found that adhesion of primary AML blasts to E-selectin caused
up-regulation of members of the Wnt and sonic hedgehog pathways,
which could be inhibited by GMI-1271 [147]. Based on this data a
phase I trial of GMI-1271 as a chemosensitizing adjunct to standard che-
motherapy in AML is planned.

Other approaches to inhibiting E-selectin:selectin ligand interac-
tions include the use of sialyltransferase inhibitors and aptamers
[148]. Aptamers are oligonucleotide-based recognition molecules that
have extraordinarily high sensitivity and selectivity towards their tar-
gets. First generation aptamers are currently in clinical trials as potential
anti-cancer agents, anti-coagulants, anti-diabetic agents, and for treat-
ment of macular degeneration, but so far only one aptamer (Macugen/
pegaptanib) has been approved. Aptamers are selected using an in-
vitro selection process, known as Systematic Evolution of Ligands by
EXponential enrichment (SELEX) using an initial, highly diverse library
of oligonucleotide sequences that was simultaneously developed by
Gold and Szostak [149,150]. It is possible that DNA-based aptamers
against the sialic acid N-acetylneuraminic acid (Neu5Ac) may have po-
tential as an E-selectin inhibitors and remodeling of the glycome inmy-
eloid cells using inhibitors of sialyl- and fucosyltransferase has already
shown promise as it results in loss of selectin binding and impaired leu-
kocyte rolling [151]. Sialyltransferase inhibitors have also shown specif-
ic activity in cancer where they have been demonstrated to suppress
tumor angiogenesis and cell metastasis in several models both in-vitro
and in-vivo [152,83,153].

The use of single lectins for specific detection of glycans associated
with certainmalignancies has beenhelpful in some cases such as the ap-
plication of concanavalin lectin (ConA) andWheat germ agglutinin lec-
tin (WGA) reactivity to p185 in breast cancer [154] or themeasurement
of T-antigen in cervical cancer using peanut agglutinin lectin (PNA)
[155]. In the last decades the emergence of lectin arrays hasmade it pos-
sible to profile a glycoprotein and compare it with other samples in a
high throughput manner. A variety of approaches have been used in-
cluding application of lectins to an array for direct detection of glycans
or lectin/antibody arrays where antibodies to potential glycoprotein
markers are printed onto glass slides. These microarrays are hybridized
against serum lectins to detect different glycan structural units on the
captured glycoproteins in a sandwich assay format [156].

Mass spectrometry (MS) based methods remain the gold standard
for identification and structural analysis of protein glycosylation. MS
can also be used to quantify carbohydrates released from individual or
multiple glycoproteins. This has been applied in breast cancer using a
MALDI–MS based glycomic profile of permethylated glycans to detect
biomarkers in patients' serum [1,157]. Focusing simply of glycosylation
related genetic signatures in certain cancers has yielded interesting and
potentially useful prognostic information. In multiple myeloma a dis-
tinct glycome of genes between normal and malignant plasma cells
has been defined and this has been associated to distinct cytogenetic ab-
normalities in this disease [158].

As our understanding of the complex glycome of cancer cells in-
creases glycome remodeling becomes an ever more attractive approach
to manipulate the metastatic and immune evasion properties of these
cells. Moving forward rapidly in this field requires additional advances
in the reliable detection and quantification of glycan heterogeneity.

7. Summary

With recent advances in glyco-analytical technologies a greater un-
derstanding of the functional significance of seemingly minor changes
in carbohydrate linkages on cell surface proteins and lipids has come
to light. There has been renewed interest in glycosylation as a dynamic
process that can evolve quickly and transiently to accommodate chang-
es in the local microenvironment of the cell and facilitate adhesive and
migratory interactions. Our understanding of changes in glycan deter-
minants on cancer related proteins, such as mucins, selectin ligands
and integrins, has uncovered a new layer of complexity, leading to a
greater understanding of how this normal process is altered in cancer,
and how these subtle alterations can have enormous implications for
cancer cell metastasis, survival, proliferation and immune escape. This
deeper understanding of the cancer glycome has led to the exploitation
of glycosylation for therapeutic and prognostic applications in a wide
array of solid and hematological malignancies and has the potential to
greatly impact the field.

The current wave of novel emerging data in this field provides ratio-
nale for investigation of newly opened questions as well as revisiting of
previously under-investigated topics using newly available tools. As
mentioned, altered glycosylation of selectin ligands in cancer contrib-
utes to a metastatic phenotype, however much remains to be answered
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about the functional interplay of glycosyltransferase dysregulation in
the tumor microenvironment and research to date is just beginning to
“scratch the surface”. In-depth understanding of carbohydrate remodel-
ing in cancer will require detailed profiling of glycosylation patterns in
the context of the tumor microenvironment.

Research agenda

□ The use of glycosylation inhibition in cancer, including inhibitors of
sialyltransferases.

□ The detection of specific glycoforms of adhesion molecules such as
integrins in cancer that can serve as targets.
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