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Summary: Multiple myeloma (MM) is characterized by clonal expan-
sion of malignant plasma cells in the bone marrow (BM). Despite the
significant advances in treatment, MM is still a fatal malignancy. This is
mainly due to the supportive role of the BM microenvironment in dif-
ferentiation, migration, proliferation, survival, and drug resistance of
the malignant plasma cells. The BM microenvironment is composed of
a cellular compartment (stromal cells, osteoblasts, osteoclasts, endothe-
lial cells, and immune cells) and a non-cellular compartment. In this
review, we discuss the interaction between the malignant plasma cell
and the BM microenvironment and the strategy to target them.
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Introduction

Multiple myeloma (MM) is characterized by clonal expan-

sion of malignant plasma cells in the bone marrow (BM)

leading to multiple bone lytic lesions, anemia, and immuno-

deficiency at the time of diagnosis (1). It is the second most

common hematologic malignancy in the United States (2).

MM is almost always preceded by a premalignant disease

well known as monoclonal gammopathy of undetermined

significance (MGUS). MGUS is found in approximately 2%

of the general population aged 50 years and in 5% of those

older than 70, and it progresses to MM at a rate of 1% per

year (3). The response rate and overall survival (OS) of MM

have significantly improved due to the introduction of novel

agents such as thalidomide, lenalidomide, and bortezomib,

and autologous stem cell transplantation (4). However MM

continues to be a mostly incurable disease. Therefore, there

is an urgent need for the development of other therapeutic

agents that not only target the tumor clone but its permis-

sive microenvironment.
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MM cells grow and expand almost exclusively within

the BM, thus suggesting the importance of the BM micro-

environment in supporting MM cell growth and survival.

The clonal plasma cell trafficking in an out of the BM

allows the progression or ‘metastasis’ of the disease to

new BM sites (5). The BM microenvironment consists of a

cellular compartment and a non-cellular compartment. The

cellular compartment can be subdivided into hematopoietic

cell types including myeloid cells, T lymphocytes, B lym-

phocytes, NK cells, and osteoclasts, while non-hematopoi-

etic cells include bone marrow stromal cells (BMSCs),

fibroblasts, osteoblasts, endothelial cells, and blood vessels.

The non-cellular compartment includes the extracellular

matrix (ECM), oxygen concentration, and the liquid milieu

(cytokines, growth factors, and chemokines), which are

produced and/or affected by the cellular compartment

within the bone marrow microenvironment. These micro-

environment compartments exert differential effects on MM

cell progression and may also work synergistically. In this

review, we discuss how each BM microenvironment com-

partment supports MM cell growth and disease progres-

sion, as well as how to target the environment to prevent

MM progression (Fig. 1).

The immune microenvironment in MM

An important step in the progression of tumors is evasion

and suppression of the host immune system (6, 7). The role

for the immune system in suppressing tumor growth was

demonstrated in vivo using immunodeficient mouse models.

For instance, Rag2�/� mice and SCID (severe combined

immunodeficiency) mice, which lack both B and T cells,

develop spontaneous adenocarcinomas (8) or T-cell lym-

phomas (9), respectively. In the normal microenvironment

the effector cells, mainly the natural killer (NK) cells and

cytotoxic T lymphocytes (CTLs), are capable of driving

potent anti-tumor responses. However, tumor cells often

induce an immunosuppressive microenvironment, which

favors the expansion of immunosuppressive cell populations,

Fig. 1. Targeting the cellular compartment of the bone marrow (BM) microenvironment in multiple myeloma (MM). Treatments
suppressing the functions of myeloid derived suppressor cells (MDSCs), Tregs, plasmacytoid dendritic cells (pDCs), macrophages, bone marrow
stromal cells (BMSCs), osteoclasts, and endothelial cells in MM microenvironment are under development, while IMiDs and PD-1 and PD-L1
antibody (PD-1/PD-L1 Ab) induce NK cell and cytotoxic T-lymphocyte (CTL) functions.
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such as myeloid derived suppressor cells (MDSCs) and regu-

latory T cells (Tregs). MM is associated with both cellular

and humoral immune deficiencies (10–12), indicating that

the evolution of disease in MM is associated with an immu-

nosuppressive milieu that fosters immune escape and tumor

growth.

Myeloid derived suppressor cells (MDSCs)

MDSCs are a heterogeneous population of immature mye-

loid cells that differentiate into macrophages, granulocytes,

or dendritic cells under normal conditions. However, under

pathological conditions such as cancer, differentiation of

immature myeloid cells is inhibited, resulting in accumula-

tion of MDSCs (13). In cancer patients and tumor models,

MDSCs accumulate in the tumor microenvironment due to

release of soluble factors by tumor cells or cells in the

microenvironment (14, 15). Previous reports showed that

cancer patients with higher MDSC levels have shorter sur-

vival compared to patients with lower MDSC levels (16,

17). Depletion of MDSCs in tumor-bearing mice using Gr-1

antibody inhibited tumor outgrowth (18, 19), suggesting

that MDSCs may be a target of anti-tumor treatment. There

are two main subsets of MDSCs, granulocytic MDSC

(G-MDSC) and monocytic MDSC (Mo-MDSC). In mice, G-

MDSCs are identified as CD11b+ Ly6Ghi Ly6Clow and

Mo-MDSCs as CD11b+ Ly6G� Ly6Chigh, while in humans

G-MDSCs are CD11b+ CD33+ HLA-DR�/low CD14b� and

Mo-MDSCs are CD11b+ CD33+ HLA-DR�/low CD14+. In

tumor-bearing mice, G-MDSCs are the main MDSC subset to

be expanded in the peripheral lymphoid organs (20).

MDSCs can suppress T-cell proliferation through expression

of immune suppressive factors, such as arginase, reactive

oxygen species (ROS), and nitric oxide (NO). G-MDSCs

have increased levels of ROS and low levels of NO, whereas

Mo-MDSCs have increased level of NO but low levels of

ROS (20, 21). It is also reported that MDSCs can induce the

development of Tregs in vivo, which are anergic and suppres-

sive (22).

Previous reports have shown an increase in the number

of MDSCs in the peripheral blood (PB) (23, 24) and BM

(25) of MM patients compared to healthy donors. MDSCs

induce MM growth by suppressing T-cell-mediated immune

responses, while MM cells induce the development of

MDSCs from healthy donor peripheral blood mononuclear

cells, confirming a bidirectional interaction between MDSCs

and MM cells and immune effector cells (24). A recent

report showed that purified MDSCs from patients with MM

was able to induce more Treg development than MDSCs

from age-matched controls (26). Interestingly, MDSCs from

5TGM1 murine MM mice displayed a significantly high

potential to differentiate into mature and functional osteo-

clasts than those from non-tumor controls, which indicates

that tumor-induced MDSCs exacerbate cancer-associated

bone destruction by directly serving as osteoclast precursors

(27).

Given that novel agents such as the immunomodulatory

drug lenalidomide and the proteasome inhibitor bortezomib

target both MM cells and the BM microenvironment (28),

the effect of these drugs against MDSCs was studied. How-

ever, neither bortezomib nor lenalidomide were able to alter

the suppressive activity of MDSCs (24). This indicates that

additional strategies are needed to target MDSCs in the MM

microenvironment. Phosphodiesterase-5 (PDE5) inhibitors

reduced the suppressive machinery of tumor recruited

MDSCs through downregulation of arginase 1 and nitric

oxide synthase-2 expression in murine tumor models (18,

29, 30). Noonan et al. (31) recently reported that PDE5

inhibitor, tadalafil, reduced MDSC function in a relapsed/

refractory MM patient. The strategy targeting MDSCs in MM

with PDE5 inhibitors may represent a novel approach that

can augment the efficacy of tumor-directed therapies.

Regulatory T cells (Tregs)

Among the T cells recruited to the tumor sites that have

immunosuppressive functions are Tregs. T-cell infiltration

has been shown to occur within the tumor microenviron-

ment due to microenvironment-secreted chemokines/cyto-

kines (32). Tregs are a subset of CD4+ T lymphocytes that

suppress functions of antigen-presenting cells (APCs) and

effector T cells by direct contact or by release of anti-inflam-

matory cytokines (IL-10 and TGF-b); they are characterized

by the expression of transcription factor FOXP3 (33). These

cells accumulate in the tumor microenvironment and the

peripheral blood of patients with cancer (34, 35). The

increased frequency of Tregs has been generally considered

as a marker of poor prognosis due to Treg-mediated sup-

pression of anti-tumor immunity (36, 37). It has been

shown by using the diphtheria toxin inducible ‘depletion of

regulatory T cell’ (DEREG) mice (38) that Treg depletion

induces regression of solid tumors, which was associated

with an increased intratumoral accumulation of activated

CD8+ cytotoxic T cells (39, 40). These data indicate that

targeting Tregs in cancer can be a potential anti-tumor

strategy.

© 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
162 Immunological Reviews 263/2015

Kawano et al � The bone marrow microenvironment in myeloma



Many groups have reported an increase of functional

Tregs in MM patient’s PB compared to healthy donors (23,

41–44). A positive association of Treg frequency with inter-

national staging system (ISS) and paraprotein level was

observed (42). The correlation between increased numbers

of functional Tregs and disease progression was also shown

in a MM mouse model (45). MM patients with higher per-

centage of Tregs in the peripheral blood are shown to have

shorter time to progression (44) and shorter overall survival

(43). Beyer et al. (41) showed that Tregs from MM patients

express increased levels of IL-10 and TGF-b compared to

healthy controls, indicating a more suppressive function of

MM patients derived Tregs. However, there are some con-

flicting results (46, 47). The mechanism of how MM cells

induce Tregs is not well understood. Feyler et al. (48)

showed in an in vitro experimental model that MM cells can

directly induce Tregs in an APC-independent manner medi-

ated, at least in part, through MM expression of ICOS-L.

These data showing the association of Tregs with MM pro-

gression suggest that Tregs could be targeted along with the

tumor cells in MM.

Low-dose cyclophosphamide (CYC) has been shown to

reduce the numbers and function of Tregs, and to induce

anti-tumor, immune-mediated effects (49, 50). In a MM

mouse model, low-dose CYC showed a transient depletion

of Tregs resulting in reduced occurrence of MM and

improved survival rate (51). Lenalidomide and pomalido-

mide, which are immunomodulatory drugs (IMiDS) used as

anti-MM treatment, are reported to inhibit expansion and

function of Tregs (52). However, for more specific and

effective targeting of Tregs, it is vital to understand how

Treg development, homeostasis, and effector function are

controlled at the molecular level.

Dendritic cells (DCs)

Dendritic cells (DCs) are BM-derived professional APCs that

present self and non-self antigens to T cells and promote

immunity or tolerance (53). Antigen presentation by DCs

induces naive T cells to differentiate into effector and mem-

ory T cells, but it can also lead to different forms of T-cell

tolerance, depending on the functional status of the DCs.

Myeloid DCs (mDCs) and Plasmacytoid DCs (pDCs) are the

two major DC subsets that have been identified based on

their origin, phenotype, and function (54). Several studies

have documented an increase of DCs in human tumor sites,

which often correlated with adverse prognosis (55–57).

Indeed, loss of immune function of tumor-infiltrating DCs

has been linked to the suppressive effects of the tumor

microenvironment mediated by various cytokines (58).

Recent findings have demonstrated that tumor-infiltrating

pDCs from solid tumors express high levels of ICOS-L,

which explains their ability to induce Tregs (59, 60). It was

also shown that TGF-b secreted by DCs from breast cancer

patients was partially associated with induction of Tregs

(61). Similar findings of induction of Tregs by DCs were

observed in MM patients (62).

DCs play an important role in normal plasma cell differ-

entiation and survival (63, 64). However, the frequency and

function of DCs in MM patients compared to healthy indi-

viduals is still controversial (65, 66). Chauhan et al. (67)

showed that pDCs are increased in MM patient’s BM com-

pared to healthy controls and pDCs confer growth, survival,

chemotaxis, and drug resistance against MM cells. Targeting

Toll-like receptors with CpG oligodeoxynucleotides both

restores pDC immune function and abrogates pDC-induced

MM cell growth. Toll-like receptor 9 (TLR-9) agonist inhib-

ited pDC-induced MM cell growth through Interferon secre-

tion and activation of TLR9/MyD88 signaling axis (68).

Kukreja et al. (69) reported that DCs enhanced clonogenic

growth of MM cell lines and primary tumor cells from MM

patients. This effect was inhibited by blockade of the

RANK–RANK ligand and BAFF–APRIL-mediated interactions.

These data suggest that MM–DC interactions may directly

impact the biology of MM and may be a target for thera-

peutic intervention.

Natural killer cells (NK cells)

NK cells represent a heterogeneous lymphocyte population

with cytotoxic anti-tumor capacity and multiple immuno-

regulatory properties. One of the NK cell activating recep-

tors is Natural Killer group 2D (NKG2D) which recognizes

various proteins expressed on the surface of target cells in

response to several forms of cellular stress. MHC class I

polypeptide-related sequence A (MICA) is one of the ligands

for NKG2D. Target tumor cells ectopically expressing MICA

are efficiently killed via NKG2D despite the expression of

MHC class I molecules (70).

NK cells in MM patients are increased in the PB (71, 72)

and BM (73, 74) compared to healthy individuals. How-

ever, the expansion of NK cells in MM patients is not associ-

ated with their activation. It is reported that the NKG2D

expression on the surface of NK cells from MM patients is

decreased (75, 76), which may lead to the escape of MM

from immunosurveillance. One of the mechanisms proposed
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is the increased levels of soluble MICA in the circulation of

MM patients, which triggers the downregulation of NKG2D

and impaired lymphocyte cytotoxicity (75). The functional

defect of NK cells in MM patients can also be explained by

the expression of programmed cell death 1 (PD-1) on NK

cells of MM patients (77). Engagement of PD-1 with their

ligand PD-L1, which is expressed on MM cells, can down-

modulate the NK cell versus MM effect.

In MM, the therapeutic efficacy of IMiDs is known to

originate, at least in part, from the activation of NK cells.

IMiDs are able to stimulate T cells to produce IFN-c and IL-

2 leading to NK cell activation (78, 79). Lenalidomide

upregulates CD16, CD40L, and LFA1 on NK cells, thereby

facilitating ADCC against MM cells (80). Salvage therapy

with lenalidomide after allogenic stem cell transplantation

for MM leads to an increase of activated NKp44+ NK cells

(81). Also the proteasome inhibitor bortezomib has been

shown to promote NK cell activation by increasing the levels

of MICA on the surface of MM cells (75). These results

show that, at least in part, the efficacy of novel anti-MM

agents is associated with NK cell activation.

Macrophages

Cells of the monocyte–macrophage lineage are one of the

major components of the leukocyte infiltration in tumors.

There is strong evidence that these cells promote inflamma-

tory circuits that ultimately lead to tumor progression,

tumor-cell invasion, and metastasis (82).

Zheng et al. (83) first showed that physical interaction

between macrophages and MM cells activates signaling path-

ways that protect MM cells from apoptosis induced by drug

treatment, thereby contributing to MM development of drug

resistance. A subsequent study (84) found that the interac-

tions between P-selectin glycoprotein ligand 1 (PSGL-1) and

intercellular adhesion molecule-1 (ICAM-1) on myeloma

cells and E/P selectins and CD18 on macrophages, respec-

tively, allowed macrophages to protect myeloma cells from

drug-induced apoptosis through stimulation of SRC, ERK1/2

kinases, and c-MYC and suppression of drug-induced caspase

activation. However, macrophages are also able to protect

myeloma cells from apoptosis through non-contact-mediated

mechanisms (85), suggesting that macrophages promote

myeloma cell survival through both a contact-mediated and

non-contact-mediated mechanisms.

In a recent study (86), the role of macrophages in MM has

been further investigated, and interesting findings have clari-

fied molecular mechanisms of activation of MM-associated

macrophages. Human myeloma–associated monocytes/mac-

rophages (MAM), but not MM cells, were found to be the

predominant source of interleukin-1b (IL-1b), IL-10, and

tumor necrosis factor-a, whereas IL-6 originates from both

stromal cells and macrophages consistent with previous

results. TLR2 and TLR6 expression on human myeloma BM

CD14+ monocytic cells correlated with local processing of

versican, a proteoglycan TLR2/6 agonist, suggesting that

the versican-TLR2/6-mitogen-activated protein 3 (MAP3)

kinase, TPL2 (Cot/MAP3K8) pathway may ultimately activate

MM-associated macrophages. Indeed, ablation of TPL2 in the

genetically engineered in vivo myeloma model, Vk*MYC, led

to prolonged disease latency associated with plasma cell

growth defect through the abrogation of the ‘inflammatory

switch’ of MM macrophages associated with development of

MM. Interestingly, pharmacologic TPL2 inhibition in human

monocytes led to dose-dependent attenuation of IL-1b

induction/secretion in response to TLR2 stimulation,

suggesting that this may represent a new therapeutic target in

MM, acting on the microenvironment and not on MM cells

(86).

Tumor-associated macrophages are also a rich source of

potent proangiogenic cytokines and growth factors, such as

vascular endothelial growth factor, IL-8, and fibroblast

growth factor-2, and express a broad array of angiogenesis

modulating enzymes including matrix metalloproteinases,

cycloxygenase-2, and colony-stimulating factor-1 (87). Neo-

vessel formation and angiogenesis are important pathogenic

mechanisms associated with MM progression (discussed

later); these observations support the hypothesis that macro-

phages may also support MM growth indirectly through the

paracrine stimulation of MM-associated neoangiogenesis.

Interestingly, MM-associated macrophages are also able to

participate directly, through vessel incorporation (vasculo-

genic mimicry), to the formation of MM-associated neoves-

sels (88). Thus, macrophages seem to greatly contribute to

MM-associated neovascularization through both the para-

crine secretion of angiogenic factors (angiogenic pathway)

and a vasculogenic pathway, and may therefore represent an

important target for designing novel anti-neovessel drugs in

MM.

PD-1/PD-L1 pathway as a target of modifying the MM

immune microenvironment

PD-1 is a type I transmembrane protein which belongs to

the CD28 family (89). PD-1 is expressed on activated and

exhausted T and B cells and has two ligands, PD-L1 and
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PD-L2. PD-L1 is not expressed on normal epithelial tissues

but it is aberrantly expressed on a variety of solid tumors

(90). Binding of PD-L1 to PD-1 reduces cytokine production

and activation of the target T cells, leading to an immuno-

suppressive microenvironment.

It is reported that PD-L1 is not expressed on normal

plasma cells, while it is expressed on primary MM cells

(91). In vitro analysis has shown that cytokines (91) and

BMSCs (92) increase PD-L1 expression on MM cells, indicat-

ing that the BM microenvironment plays a role in the activa-

tion of the PD-1/PD-L1 pathway. It has been demonstrated

that PD-1 expression is upregulated on T cells (93) and NK

cells (77) isolated from patients with MM compared to

healthy donors, likely leading to an inhibition of anti-tumor

immunity through the expression of PD-L1.

Clinical trials targeting PD-1/PD-L1 pathway to overcome

tumor-associated immune suppression have shown promis-

ing results for a variety of solid tumors. Some groups have

reported the efficacy of inhibiting the PD-1/PD-L1 pathway

in preclinical studies of MM. Rosenblatt et al. (93) showed

that CT-011, an anti-PD1 antibody, enhanced activated

T-cell responses after DC/tumor fusion stimulation in MM.

Hallet et al. (94) showed that PD-L1 blockade combined

with stem cell transplant and whole-cell vaccination

increased the survival of myeloma-bearing mice. Kearl et al.

(95) showed that PD-L1 antibody improves survival of mur-

ine MM when combined with whole body irradiation. Con-

sidering the elevation of PD-1 and its ligand in the MM

microenvironment, inhibition of the PD-1/PD-L1 pathway

has the potential to change the strategy of the microenviron-

ment targeted therapy in MM.

Other cellular compartments

Bone marrow stromal cells (BMSCs)

MM cells adhere to BMSCs and ECM into the BM. Adhesion

of tumor cells to BMSCs activates many pathways resulting

in the upregulation of cell cycle regulating proteins and

anti-apoptotic proteins (96). Differences in MM- versus nor-

mal BMSCs adhesion molecule expression may facilitate MM

cell entrapment in the BM. MM BMSCs express adhesion

molecules that bind MM cells inter-cellular adhesion mole-

cule-1 (ICAM-1) and vascular cell adhesion molecule 1

(VCAM-1) at higher levels than normal BMSCs (97, 98).

Beta-1 and beta-2 integrin mediated MM cell adhesion may

also be stronger to MM BMSCs than to normal BMSCs (99).

The interaction between MM cells and BMSCs triggers

NF-jB signaling pathway and IL-6 secretion in BMSCs. In

turn, IL-6 enhances the production and secretion of vascular

endothelial growth factor (VEGF) by MM cells. The exis-

tence of this paracrine loop optimizes the BM milieu for

MM tumor-cell growth (100). BMSC-MM cell interaction is

also mediated through Notch. The interaction of Notch–

Notch ligand leads to activate Notch-signaling pathways

both in MM cells as well as in BMSCs, with induction of

IL-6, VEGF, and insulin-like growth factor (IGF-1) secretion,

and is associated with MM cell proliferation and survival

(101, 102). Moreover, BMSCs from MM patients expresses

several pro-angiogenic molecules such as VEGF, basic-fibro-

blast growth factor (bFGF), angiopoietin 1 (Ang-1), TGF-b,

platelet-derived growth factor (PDGF), hepatocyte growth

factor (HGF), and IL-1 (103). Gene-expression profiling

data showed that growth differentiation factor 15 (GDF15)

is aberrantly secreted by BMSCs in MM (104). GDF15 not

only increases survival of stroma-dependent MM cells (105),

but also enhances the tumor-initiating potential and self-

renewal of MM cells (106). BMSCs in MM seem to support

proliferation of the stem-like population of MM cells to a

greater extent than normal BMSCs, suggesting that MM

BMSCs are more specifically selective for the growth of

tumor-initiating cells than normal BMSCs (107).

BMSCs from MM patients have also been shown to release

exosomes, which are transferred to MM cells, thereby result-

ing in modulation of tumor growth in vivo. This finding sug-

gests that exosomes might constitute a novel mechanism for

intercellular transfer of genetic information in clonal plasma

cell disorders (108).

Multiple drugs can also target the BMSC–MM interactions.

Bortezomib inhibits MM cell growth triggered by BMSC

adhesion, as well as production and secretion of cytokines

that mediate MM cell growth and survival (109). In addi-

tion, bortezomib directly induces osteoblastic differentiation

in BMSCs to combat osteolysis through RUNX-2 (110). The

CXCR4 inhibitor AMD3100 enhances sensitivity of MM cell

to multiple therapeutic agents by disrupting adhesion of

MM cells to BMSCs (111). Novel drug screens using BMSC–

MM cell co-cultures may allow the development of thera-

peutic agents that are clinically relevant to target the BMSCs

in MM (112).

Osteoblasts

It has been reported that osteoblasts may contribute to MM

pathogenesis by supporting MM cell growth and survival

(113). This could potentially result from the ability of

osteoblasts to secrete IL-6 in co-culture system with MM
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cells. Other mechanisms include the possible role of

osteoblasts in stimulating MM cell survival by blocking

TRAIL-mediated programmed MM cell death by secreting

osteoprotegerin (OPG) (114).

In addition, it is clear that suppression of osteoblast activ-

ity is responsible for both osteolytic process and progression

of MM tumor burden (115). One of the factors responsible

for suppression of osteoblast activity in MM is Dickkopf-1

(DKK1) (116). DKK1 is a Wnt signaling pathway inhibitor,

which acts by binding to LRP5/6 preventing Wnt signaling

and leading to translocation of b-catenin to the nucleus

(117). Elevated DKK1 levels in BM and PB from patients

with MM correlated with the gene-expression patterns of

DKK1 and were associated with the presence of focal bone

lesions (116). Recombinant human DKK1 or BM serum

containing an elevated level of DKK1 inhibited the differen-

tiation of osteoblast precursor cells in vitro (116). Studies

have shown that blocking DKK1 and activating Wnt signal-

ing prevents bone disease in MM, but is also associated with

a reduction in tumor burden (118–120). Fulciniti et al.

(120) showed that the anti-Dkk1 antibody (BHQ880)

increases osteoblast differentiation in vitro and increases

osteoblast number and trabecular bone in vivo. Blockade of

DKK1 can restore osteoblast activity in MM, which may lead

to improvement of MM bone disease.

Proteasome inhibitors have direct effects on osteoblasts to

promote osteoblast differentiation and bone formation.

Garett et al. showed that proteasome inhibitors regulate bone

morphogenetic protein-2 (BMP-2) gene expression of osteo-

blastic cells in part through inhibiting the proteolytic pro-

cessing of Gli3 protein (121). Bortezomib increases the

number of osteoblasts in a 5T2MM mouse model (122). It

was also reported that the serum concentrations of bone-

specific alkaline phosphatase (BAP) and osteocalcin, which

indicates osteoblast activity, increased significantly in MM

patients treated with bortezomib (123). Bone-specific nano-

particles loaded with bortezomib showed increased osteo-

blastic activity contributing to increased bone volume as

well as inhibition in MM growth in vivo (124). These results

indicate the potential for proteasome inhibitors to increase

osteoblastogenesis in the BM microenvironment in MM.

Osteoclasts

The balance between bone resorption and bone formation is

lost in the majority of cases in MM, resulting in bone

destruction and development of osteolytic lesions (125).

Several factors are implicated in osteoclast activation,

including RANKL, macrophage inflammatory protein-1a

(MIP-1a), IL-3, and IL-6, which are produced by MM cells

and play a role to increase osteoclast activity (126).

RANKL is a member of the tumor necrosis factor (TNF)

family and plays a major role in the increased osteoclasto-

genesis implicated in MM bone disease. RANK is a trans-

membrane signaling receptor expressed by osteoclast cells.

MM cell binding to neighboring BMSC within the BM

results in increased RANKL expression. This leads to an

increase in osteoclast activity through the binding of RANKL

to its receptor, on osteoclast precursor cells, which further

promotes their differentiation through NF-jB and JunN-

terminal kinase pathway (127). RANKL is also involved in

inhibition of osteoclast apoptosis. Blocking RANKL with sol-

uble form of RANK has been shown to modulate not only

bone loss, but also tumor burden, in MM in vivo models

(128). Denosumab is a fully human monoclonal antibody

that binds RANKL with high affinity and specificity and

inhibits RANKL-RANK interaction, resulting in rapid and

sustained suppression of the markers of osteoclastic bone

resorption (129).

Bruton’s tyrosine kinase (BTK) plays a significant role in

B-cell development (130). BTK is highly expressed in MM

cells and the BTK inhibitor ibrutinib has been reported to

be cytotoxic to MM cells via inhibiting the NF-jB pathway

(131). BTK is also expressed in osteoclasts and implicated in

bone resorption by regulating osteoclast differentiation

(132). Tai et al. showed that ibrutinib blocked

RANKL/M-CSF–induced phosphorylation of BTK and down-

stream PLC-c2 in osteoclasts, resulting in reduced bone

resorption activity (133). Ibrutinib treatment also signifi-

cantly inhibited in vivo MM cell growth and MM cell–

induced osteolysis of implanted human bone chips in SCID

mice. These data suggest that BTK can be a target of MM

induced osteolytic bone disease.

Endothelial cells and BM vessel formation in MM

It is well established that neovascularization of solid tumors

is important for tumor growth and metastasis (134, 135).

In the BM, blood vessel circulation is normally induced and

maintained by the balanced interplay of cells, cytokines, and

growth factors within a complex ecosystem in which endo-

thelial cells and pericytes proliferate in concert with fibro-

blasts, DCs, inflammatory cells, and hematopoietic stem cells

(136). It is now clear that malignant cell growth in the BM

upset this balance, leading to increased vascularity and thus

tumor progression (136).
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The first evidence suggesting that neovascular formation

is involved in the MM pathogenesis date back to 1995

(137, 138), when an increase in microvascular density

(MVD) was observed in the BM of active MM patients com-

pared to those with inactive MM and MGUS (137). Rajku-

mar et al. (139) then showed a gradual increase in BM

angiogenesis along the disease spectrum of plasma cell dis-

crasias from MGUS to smoldering MM, newly diagnosed

MM, and relapsed MM, although the expression levels of

VEGF, bFGF, and their receptors were similar among MGUS,

smoldering MM, and newly diagnosed MM (140). Several

other studies have found a significant correlation between

BM MVD and clinical parameters of prognosis, including

progression free survival (PFS) and overall survival (OS), in

MM patients (141).

Increase in PB and BM plasma or serum of the major pro-

angiogenic cytokines VEGF, bFGF, HGF, and Syndecan-1

correlate with progression of MM to advanced stage of dis-

ease (141). All these observations strongly suggest that BM

neovessels and neovessel formation are important patho-

genic mechanisms, likely promoting MM progression (142,

143).

Interestingly, endothelial cells (ECs) derived from the BM

of MM patients have been shown to be different in terms of

transcriptome (144) and proteome (145) profiles from

those of MGUS or anemic patients (136). MM derived ECs

are endowed of an over-angiogenic phenotype able to sup-

port directly the growth, proliferation, and invasion of MM

through the direct secretion of several growth factors,

including IL-6 (146). For example, a cross-talk between

MM cells and ECs has been described, where MM cells

secrete VEGF that stimulates ECs to produce IL-6; this cross-

talk ultimately determines simultaneous proliferation of both

MM cells and ECs (147). MM ECs, but not MGUS ECs, are

able to spontaneously secrete several other growth factors,

including bFGF and HGF, which also promote MM cell pro-

liferation and survival (148). All these studies show that

vessel formation together with functional transformation of

BM MM ECs ultimately lead to MM progression in a syner-

gistic way. Although novel anti-MM drugs like thalidomide

(148), lenalidomide (145), and borteziomib (149) have

anti-angiogenic ability that in part explains their potent anti-

MM activity, anti-angiogenic drugs that target the VEGFR2

pathway (such as bevacizumab) have failed to show activity

in MM patients (142). This indicates that new and more

effective strategies to target MM-associated vasculature are

needed to exploit the therapeutic potential of vessel target-

ing in MM.

The non-cellular compartment

Extracellular matrix

The ECM is a major component of the tumor microenviron-

ment in several cancers, contributing to the regulation of

cell survival, proliferation, differentiation, and metastasis

(150). Gene-expression profiling has shown that genes

encoding for ECM components are dysregulated during

tumor progression (151) and in MM ECM components,

such as integrins, have been shown to play an important

role in drug resistance (152). MM plasma cells directly

interact with the ECM via binding of syndecan-1 and very

late antigen-4 (VLA-4) to ECM proteins, such as collagen

type 1 and fibronectin. These adhesive interactions of MM

cells result in upregulation of anti-apoptotic proteins and

cell cycle dysregulation (96).

It is increasingly clear, however, that not only does the

ECM form an important part of the permissive tumor

microenvironment for malignant plasma cells, it also con-

tributes to the premetastatic niche with alterations in the

ECM evident at the MGUS phase. A recent proteome profil-

ing study of primary BMSCs from MM patients, MGUS

patients, and non-neoplastic control patients revealed a

group of ECM proteins, ECM receptors, and ECM-modulat-

ing enzymes that are upregulated in a stepwise fashion

from MGUS to MM. This includes proteins such as laminin

a4, lysyl-hydroxylase 2, integrin a5b5 and matrix metallo-

proteinase-2 (MMP-2). This indicates that matrix remodel-

ing in MM is already present at the MGUS phase and may

provide rationale for ECM directed targeting of the premeta-

static niche in MM (153). Preparation of the metastatic

niche is potentially mediated by factors such as matrix me-

talloproteinases and lysl oxidase, with consequent modula-

tion of collagens and elastins at the premetatstatic site. The

concept of release of growth factors and cytokines by the

tumor cells in preparation for distant site engraftment is

now emerging and, for example, bone marrow-derived

hematopoietic cells that express VEGFR1 home to tumor

specific premetastatic sites and form cellular clusters before

the arrival of tumor cells, coincident with the upregulation

of fibronectin at these sites providing a permissive niche for

arriving tumor cells (154).

As we uncover more about the composition of the ECM

in MM and the nature of the complex interactions between

MM cells, BMSCs, and ECM components, therapeutic targets

are likely to emerge that are not only promising for MM

patients, but also for selected targeting of the bone marrow

niche in patients with premetastatic disease.
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Oxygen concentration

Hypoxia is an imbalance between oxygen supply and con-

sumption that deprives cells or tissues of oxygen. Decrease

in oxygen levels are observed in certain types of pathologi-

cal situations, such as cancer. Hypoxic regions arise in

tumors because of rapid cell division and aberrant blood

vessel formation (155). In solid tumors, it has been indi-

cated that the hypoxic microenvironment contributes to can-

cer progression by activating adaptive transcriptional

programs, thereby promoting tumor-cell survival, motility,

and metastasis leading to worse prognosis (156, 157). It has

been shown that the BM of MM mouse models (158, 159)

and MM patients (160) are hypoxic compared to healthy

controls, so targeting hypoxia niches should be considered

as a novel approach for the treatment of MM.

Intratumoral hypoxia promotes metastasis through acqui-

sition of epithelial mesenchymal transition (EMT) features

in several models of solid tumors (161–163). Recent stud-

ies have suggested that hypoxia activates EMT-related

machinery in MM cells, decreases expression of E-cadherin,

decreases adhesion of MM cells to the BM, and enhances

the egress of MM cells to the circulation (164). In parallel,

hypoxia increased the expression of CXCR4, consequently

increasing the migration and homing of circulating MM

cells to new BM niches. In addition, hypoxia induces

immature and stem cell-like phenotypes in myeloma cell

lines in vitro (165). These data show that hypoxic condi-

tions change MM cells to a different phenotype, which

may lead to changes in treatment sensitivity. TH-302, a 2-

nitroimidazole-based nitrogen mustard prodrug, was tested

as a hypoxic-activated treatment in the 5T33 MM mouse

model. TH-302 induced apoptosis of the MM cells within

the bone marrow microenvironment (158) and worked

synergistically in combination with bortezomib (166).

Therefore, targeting the hypoxic microenvironment in

combination with other novel anti-MM agents can be a

new anti-MM treatment strategy.

Conclusion

This review shows the advances in the understanding of the

association between MM cells and the BM microenviron-

ment. Although the response rate and OS of MM have sig-

nificantly improved due to the introduction of novel agents,

MM is still an incurable disease. As MM pathophysiology is

supported by a strong interaction between the clonal plasma

cells and the surrounding bone marrow microenvironment,

treatment targeting this interaction is necessary for the cure

of MM. Further understanding of the MM supportive BM

microenvironment and development of new drugs or strate-

gies targeting them are needed.
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