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A B S T R A C T

Multiple myeloma (MM) is a type of B-cell malignancy that remains incurable to date. The bone marrow
(BM) microenvironment plays a crucial role in MM progression. The chemokine SDF-1 (CXCL12) is an
important actor of the BMmicroenvironment that has the ability to regulate numerous processes related
to its malignant transformation during MM development. The activity of SDF-1 is mainly mediated by
its specific receptor CXCR4, which is expressed at the surface of MM cells and various other BM cell types.
Current treatments available for MM patients mainly target tumor cells but have limited effects on the
BM microenvironment. In this context, SDF-1 and CXCR4 represent ideal targets for the normalization
of the MM-supportive BMmicroenvironment. The present review focuses on the activity of SDF-1 in the
MM BM microenvironment and the current efforts carried out to target the SDF-1/CXCR4 axis for treat-
ment of MM.

© 2015 Elsevier Ireland Ltd. All rights reserved.

Introduction

Chemokines are a superfamily of cytokines that act as
chemoattractants and exert their action by binding to specific
G-protein 7-span transmembrane receptors expressed on the plasma
membrane of target cells [1]. Chemokines are responsible for the
recruitment of immune cells in the body and are therefore essen-
tial for processes like inflammation and organ homeostasis [2]. SDF-1
(stromal cell-derived factor-1), also named CXCL12 or PBSF (pre-B
cell-growth-stimulating factor), is a chemokine that is expressed
by stromal cells and was initially characterized as a growth-
stimulating factor for a B-cell progenitor [3,4]. In human, six isoforms
of SDF-1 have been identified, with SDF-1 alpha being the major
isoform of the protein [5,6].

SDF-1 plays a critical role in multiple processes during embryo-
genesis including hematopoiesis, cardiogenesis, vascular formation
and neurogenesis, and knockout of SDF-1 in the embryo is lethal
[4,7]. In adults, SDF-1 is responsible for the homing and retention
of hematopoietic stem cells (HSCs) in the bone marrow (BM) and
lymphocyte trafficking [8]. It is also involved in the recruitment of
endothelial progenitor cells (EPCs) during the process of angiogen-
esis [9]. Knockout of SDF-1 in adult mice leads to disruption of HSC
homeostasis [10]. SDF-1 has shown protumoral and prometastatic
effects in a number of solid tumors as well as in hematologic ma-
lignancies such as leukemia, lymphoma andmultiplemyeloma (MM)
[4,8,11,12]. CXCR4 is a specific receptor to SDF-1 which has a crucial
importance in mediating its cellular effects. It is expressed not only

on the surface of HSCs and lymphocytes but also on tumor cells such
as MM cells, B-cell chronic lymphocytic leukemia (B-CLL) cells and
breast cancer cells [13]. CXCR7 has recently been identified as
another SDF-1-binding receptor and is highly expressed in malig-
nant hematopoietic cells [14,15].

MM is an incurable B-cell malignancy characterized by abnor-
mal proliferation of plasma cells in the BM. Patients withMMdisplay
multiple lytic lesions thus suggesting an active circulation through-
out the body and homing to the BM of MM cells [16]. The BMmilieu
plays a crucial role in the pathogenesis of MM. During disease pro-
gression, BM niches transform to form an ideal environment for the
homing and growth of MM cells [17,18]. These niches consist of
several cell types such as stromal cells, endothelial cells, osteo-
clasts, macrophages, fibroblasts and immune cells [19–21]. As amajor
actor of the BMmicroenvironment, SDF-1 represents a target of in-
terest for the normalization of MM-supportive BM niches and the
inhibition of MM cell trafficking throughout the body. The present
review reports on the multiple mechanisms of the MM-supportive
influence of SDF-1 on the tumor microenvironment and describes
the effects of targeting the SDF-1/CXCR4 axis for MM treatment.

SDF-1-dependent adhesion, migration and homing

The primary effect of SDF-1 and its receptor CXCR4 on MM cells
is to promote migration, adhesion and homing to the BM. SDF-1
levels are higher in the BM of patients with MM compared to pa-
tients with monoclonal gammopathy of undetermined significance
(MGUS) – a precursor condition of MM – or healthy individuals. In-
terestingly, SDF-1 is significantly enriched in specific areas of the
BM colonized with MM cells [22]. Knockdown of SDF-1 in MM
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BM-mesenchymal stem cells (BM-MSCs) inhibits adhesion and mi-
gration of MM cells toward them [12,22]. Co-culture of these MM
BM-MSCs withMM cells reduces activation of migration-related and
pro-survival pathways in the latter [12,22].

SDF-1 acts on MM cells by inducing motility and cytoskeleton
rearrangements which facilitate their colonization of distant BM
niches [12]. Importantly, knockdown of CXCR4 in MM cells re-
vealed the involvement of the P13K and ERK/MAPK pathways in SDF-
1-dependent migration [12]. However, the modulation of adhesion,
migration and homing of MM cells by SDF-1 involves complex
mechanisms and various types of molecules have been uncovered
as mediators of its activity.

Matrix metalloproteinases (MMPs) play a crucial role in tumor
cell invasion, thanks to their ability to degrade the extracellular
matrix. Evidence seems to indicate that SDF-1-dependent induc-
tion of MM cell invasiveness is partly mediated by MMPs. Indeed,
it was demonstrated that the MMPs MT1-MMP and MMP-9 con-
tribute to SDF-1-triggered MM cell invasion through matrigel [23].
A second study supports these findings by showing that SDF-
1alpha exerts chemoattraction over the MM cell lines 5T2MM and
5T33MM and induces an increase of the MMP-9 levels in these cells
which correlate with their invasive capacity [24].

The integrin alpha4beta1 or VLA-4 (Very Late Antigen-4)
is another mediator of SDF-1 activity. It was shown that
transendothelial migration of MM cells promoted by SDF-1 in-
volves an upregulation of integrin alpha4beta1-dependent cell
adhesion to the endothelium [25]. Another study demonstrated that
upregulation of integrin alpha4beta1 by SDF-1 promotes MM cell
adhesion to CS-1/fibronectin and VCAM-1 [26]. Sphingosine-1-
phosphate cooperates with SDF-1 to promote this alpha4beta1-
dependent mechanism of cell adhesion which also involves
intracellular cAMP activity and activation of the GTPase RhoA [25,27].
Inversely, the growth factor TGFbeta1 can decrease MM cell adhe-
sion to CS-1/fibronectin and VCAM-1 by downregulating SDF-1 [28].

While TGFbeta1 inhibits SDF-1, other growth factors such as HGF
and IGF-1 synergize with SDF-1 to enhance migration of MM cells
through activation of P21-activated kinase [29]. Members of another
family of molecules, the GTPases RhoA, Rac1 and RaI, also play key
roles in SDF-1-inducedMM cell migration or adhesion to BM stromal
cells. ROCK – an effector protein of RhoA- and RacI – mediates SDF1-
induced polymerization of actin and activation of LIMK, SRC, FAK
and cofilin [30,31].

SDF-1 in hypoxia and angiogenesis

It has been reported that the levels of SDF-1 in the peripheral
blood of patients with MGUS and MM correlated with the degree
of angiogenesis and plasma cell infiltration in their BM [32]. Addi-
tionally, conditionedmedium containing SDF-1 obtained from aMM
cell line promoted angiogenesis in vitro [32]. SDF-1 was found to
be secreted at higher levels in the BM endothelial cells (ECs) from
patients with MM compared to ECs from human umbilical cord
(HUVEC), which are considered the normal counterpart to this cell
type [33].

SDF-1 and its receptors are also involved in hypoxia-induced an-
giogenesis. A study demonstrated that following exposure to hypoxic
conditions, the expression levels of SDF-1 in MM cells increased and
hypoxia-inducible factor-2 (HIF-2) bound to the SDF-1 promoter.
Interestingly, the induction of angiogenesis in vivo caused by
overexpression of hypoxia-inducible factor in MM cells was inhib-
ited when an antagonist of SDF-1 was administrated, indicating a
mediating effect of SDF-1 in hypoxia-induced angiogenesis [34].
Hypoxic conditions also increased the expression of CXCR4 in MM
primary cells and cell lines. Furthermore, higher levels of CXCR4were
induced in the MM cell line RPMI8226 by the angiogenic factor

vascular endothelial growth factor (VEGF) [35]. The other receptor
for SDF-1, CXCR7, is expressed at the surface of angiogenic mono-
nuclear cells (AMCs) and plays a significant role in the trafficking
and the homing of these cells to BM areas of MM growth and
neoangiogenesis. Interestingly, the administration of an inhibitor
of CXCR7 suppressed the trafficking of AMCs to these MM areas and
delayed tumor progression. This study shows that MM tumor
progression can be inhibited through the targeting of the microen-
vironment without having a direct effect on MM cells [15].

Recent reports indicate that targeting neo-angiogenesismay result
in the inhibition of MMprogression at very early stages of the disease
[36,37]. In that regard, the effect of SDF-1 on angiogenesis makes
it an interesting target for early treatment of MM.

SDF-1 and MM-related bone resorption

SDF-1-dependent modulation of the MM microenvironment is
also exerted through modulation of osteoclastogenesis and bone
resorption. It was shown that SDF-1 levels positively correlated
with bone resorption in MM [38,39]. When recombinant SDF1 alpha
was added to a culture of osteoclast precursors, an increase in os-
teoclast motility and activation was observed as well as a significant
augmentation of the number and size of resorption lacunae [38].
Interestingly, stimulation of osteoclast formation by the MM cell
line RPMI8226 was suppressed by a specific inhibitor of CXCR4.
Another study performed in a mouse model of MM-mediated
focal osteolysis confirmed the involvement of the SDF-1/CXCR4
axis in bone resorption. Indeed, bone loss was significantly inhib-
ited in this model when an antagonist of SDF-1/CXCR4 was
administrated. In vivo implantation of the MM cell line RPMI8226
modified to overexpress SDF-1 led to a significant decrease in
bone volume and an increase in osteoclast recruitment in the tumor
area [39].

The control of SDF-1 over osteoclast activity might be medi-
ated by Bruton tyrosine kinase (BTK), a protein indispensable for
B-lymphocyte development and involved in osteoclastogenesis. A
study showed that BTK mediates migration toward SDF-1 and
homing to the bone of MM cells and that its expression in MM cells
correlates with cell-surface CXCR4. Furthermore, BTK is activated
by SDF-1 in MM cells. In a MM xenograft mouse model, adminis-
tration of an inhibitor of BTK inhibited osteoclast activity and bone
resorption and moderately slowed down tumor progression [40].

SDF-1 and other actors of the BM environment

Tumor-associated macrophages (TAMs) are a type of tumor-
infiltrating leukocytes that suppress anti-tumor immune response,
induce angiogenesis and promote tumor progression. They have a
similar phenotype to M2-polarized macrophages. Interestingly, se-
cretion of SDF-1 by MM cells and BM stromal cells plays a key role
in regulating recruitment of monocytes, which are precursors of mac-
rophages. It was demonstrated that blockade of CXCR4 significantly
decreased monocyte recruitment toward a culture medium condi-
tioned by MM cells. Additionally, a higher number of CXCR4-
expressing macrophages were found in the BM of patients with MM
compared to patients with MGUS and healthy individuals [41].

Cancer-associated fibroblasts (CAFs) are a component of the
stromal microenvironment with a supportive role in tumor pro-
gression and drug resistance. Interestingly, a study found that the
number of CAFs in patients with active MMwas higher than in pa-
tients in remission or with MGUS. These active MM CAFs promoted
chemotaxis, adhesion, proliferation and resistance to apoptosis of
MM cells and produced higher levels of oncogenic-related pro-
teins including SDF-1 alpha, IL-6 and VEGF [42].
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Targeting of the SDF-1/CXCR4 axis in MM

In 2008, the CXCR4 antagonist Plerixafor (AMD3100) was ap-
proved by the FDA for the mobilization of HSCs in the peripheral
blood circulation before autologous transplant in patients with MM
and non-Hodgkin lymphoma [43]. It was also shown that Plerixafor
induced chemosensitization inMM cells [44]. More recently, as SDF-1
emerged as an interesting target for the normalization of MM-
promoting BM niches, a number of molecules targeting the SDF-
1/CXCR4 axis were studied.

Olaptesed pegol (ola-PEG) is a PEGylated high affinity L-RNA
aptamer or Spiegelmer (Noxxon Pharma) that specifically binds
SDF-1 to neutralize its activity. In the B-cell line Jurkat, Ola-PEG in-
hibited SDF-1-induced internalization of the CXCR4 receptor and
inhibited chemotaxis in a dose-dependent manner. SDF1-mediated
activation of CXCR7 was also suppressed by Ola-PEG [22].

In a xenograft model of MM, a significant reduction of tumor
growth was observed in mice pretreated with Ola-PEG as com-
pared to untreated mice and mice treated with Plerixafor. Ola-Peg-
induced effects were also assessed in a mouse model of MM
metastasis, showing a reduction of the colonization of distant BM
niches by MM cells. Further in vivowork showed that Ola-PEG mo-
bilizes MM cells in the blood circulation and acts synergistically with
Bortezomib to reduce tumor burden, possibly by rendering the BM
microenvironment less receptive to MM cells [22].

The ola-PEG compound is currently evaluated in two phase 2 clin-
ical trials respectively in combination with Bortezomib and
Dexamethasone in patients with relapsed MM and in combina-
tion with Bendamustine and Rituximab in patients with relapsed
chronic lymphocytic leukemia (CLL) [45].

Several other compounds have been shown to have an effect on
MM through targeting of the SDF-1/CXCR4 axis. Walterinnesia
aegyptia venom (WEV), Thymoquinone and Sorafenib suppress SDF-
1-mediated cytoskeleton rearrangements in MM cells, subsequently
causing a reduction of chemotaxis and inducing apoptosis in these
cells [46–49].

Studies evaluating an antibody directed against CXCR4 (BMS-
936564/MDX-1338), as well as a CXCR4 antagonist (4F-benzoyl-
TN14003), have shown antitumor activity in MM [50,51]. These
molecules are under clinical investigation in patients withMM along
with two other CXCR4-inhibiting molecules [52]. Gambogic acid in-
hibits SDF-1-mediated chemotaxis and MM-induced differentiation
of macrophages to osteoclasts by preventing binding of p65 to the
CXCR4 promoter [53].

Additionally, it has been shown that the expression levels of SDF-1
and CXCR4 were significantly reduced in MM patients treated with
Thalidomide, a drug used for treatment of MM [54]. Anti-Notch treat-
ment also reduced the SDF-1 and CXCR4 levels of MM cells and
inhibited their infiltration of the BM in aMMxenograft mousemodel
[55]. Remarkably, Dexamethasone increases CXCR4 expression in
MM cells while downregulating their expression and secretion of
SDF-1 [35].

Conclusion

Successfully treating MM is challenging because of the high
clonogenicity of MM cells and the important supportive role of the
BM microenvironment that are responsible for disease progres-
sion. The current treatmentsmainly target MM cells and rarely target
the BM environment, which can account for the high frequency of
relapse and drug resistance phenomena in patients with MM that
eventually result in fatality [18,56]. Therefore, transforming the MM
tumor microenvironment to make it less receptive to MM cells and
less supportive of their dissemination to distant BM niches appears
a promising strategy for the treatment of MM.

SDF-1 is a pivotal regulator of the tumor microenvironment that
has the ability to regulate multiple oncogenic processes such as an-
giogenesis, osteoclastogenesis or tumor cell migration and adhesion
to stromal cells. These features make SDF-1 an ideal candidate for
efficient targeting the MM BM microenvironment. As a matter of
fact, compounds targeting SDF-1 and CXCR4 are currently as-
sessed in clinical trials involving patients with MM [45,50,51].
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