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Multiplemyeloma is a B-cellmalignancy characterized by the unrelenting proliferation of plasma cells.Multiplemy-
eloma causes osteolytic lesions and fractures that do not heal due to decreased osteoblastic and increased osteoclas-
tic activity. However, the exact relationship between osteoblasts andmyeloma cells remains elusive. Understanding
the interactions between these dynamic bone-forming cells and myeloma cells is crucial to understanding how
osteolytic lesions form and persist and how tumors growwithin the bonemarrow. This review provides a compre-
hensive overviewof basic and translational research focusedon the role of osteoblasts inmultiplemyelomaprogres-
sion and their relationship to osteolytic lesions. Importantly, current challenges for in vitro studies exploring direct
osteoblastic effects on myeloma cells, and gaps in understanding the role of the osteoblast in myeloma progression
are delineated. Finally, successes and challenges in myeloma treatment with osteoanabolic therapy (i.e., any treat-
ment that induces increased osteoblastic number or activity) are enumerated. Our goal is to illuminate novelmech-
anisms bywhich osteoblastsmay contribute tomultiplemyelomadisease progression and osteolysis to better direct
research efforts. Ultimately,we hope thismay provide a roadmap for newapproaches to the pathogenesis and treat-
ment of multiple myeloma with a particular focus on the osteoblast.
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Introduction

Multiple myeloma is an incurable plasma cell dyscrasia, a type of B-
cell cancer that progresses through stages frommonoclonal gammopathy
of undetermined significance (MGUS), to asymptomatic smoldering my-
eloma, and lastly, to overt, symptomatic myeloma. This last stage is asso-
ciated with significant morbidity, particularly in the form of fractures.
Recent reports show thatMGUS is also correlatedwith enhanced skeletal
risks and osteopenia at this early stage of plasma cell transformation [1].
During multiple myeloma progression, osteolytic lesions are found
throughout the skeleton with multiple tumors or “omas” packing the
bone marrow. Osteolysis, a hallmark of multiple myeloma-induced
bone disease, results from decreased osteoblastic activity and increased
osteoclastic activity, releasing growth factors and cytokines embedded
in bone matrix to form a “vicious cycle” [2–5]. The degree of osteolysis
is an important parameter in the assessment of multiple myeloma
patients. While the numbers of osteoblasts and bone formation rates
are often increased in the early stages of tumor burden, due to increased
osteoclast activity (which feeds back to activate increased osteoblast
activity), these numbers become significantly lower when plasma cell
infiltration occupies more than 50% of bone marrow [6]. Although
bone-building (bone anabolic) treatments are currently being explored
in early clinical trials to delay the time to first skeletal-related events
(SREs) [7,8], much work remains to be done to validate if these are
truly anti-myeloma strategies with long-term clinical benefits.

Preliminary research has demonstrated that osteoblast numbers can
be decreased in hematologic malignancies, even in non-osteolytic tu-
mors (a decrease of 55%was found inmyelodysplasia and acutemyeloid
leukemia patients) and that osteoblasts can have an anti-tumor effect in
blood cancers [9]. In support of this concept, the genetic depletion of os-
teoblasts inmousemodels of acute leukemia led to increased circulating
tumor cells and tumor marrow and spleen engraftment, higher tumor
burden, and shorter survival [9]. Myelopoiesis increased and was
coupled with a reduction in B-lymphopoiesis and compromised eryth-
ropoiesis, suggesting alterations in hematopoietic differentiation.
Whenmicewith acutemyeloid or lymphoblastic leukemiawere treated
with a pharmacological inhibitor of duodenal serotonin, a hormone that
suppresses osteoblast numbers, osteoblast numbers were increased, as
expected. Remarkably, this treatment and subsequent maintenance of
the osteoblast pool restored normal marrow function, reduced tumor
burden and prolonged survival [9]. Therefore, osteoblasts may play a
fundamental role in propagating leukemia in the marrow; pathways
mediating this regulation still need identification.

One of themost pressing gaps inmultiple myeloma biology is a basic
biological understanding of the role of osteoblasts in disease progression
(see Fig. 1). Recently, bone microstructural changes have been identi-
fied, along with elevated DKK1 and MIP-1α levels, in patients with
MGUS [10]. Moreover, epidemiological data have demonstrated that
low bone mineral density, increased fracture rate, and osteoporosis cor-
relate withMGUS [1]. This provides more evidence that decreased oste-
oblast number/function, or weaker bones, could not only result from,
but also cause or accelerate multiple myeloma [11]. As reviewed here,
in vitro and in vivo studies to interrogate this hypothesis are crucial to el-
evate these correlations to mechanistically defined causal relationships.
Studies are ongoing to identify underlying biological mechanisms by
which osteoporosis could contribute to the development of multiple
myeloma, and to gain insights into the roles of bone strength and
bone-matrix forming cells in the etiology and pathogenesis of the dis-
ease. These studies are focused on several key questions: Do osteoblasts
typically inhibit or stimulate the growth of myeloma cells? Would aug-
menting this specific cell type within the microenvironment decelerate
or accelerate the progression of the disease, or affect its initial establish-
ment? Inwhichways do osteoblasts directly or indirectly, through inter-
actions with other bone marrow cells, affect the pathogenesis of
multiplemyeloma?Hereinwe review current concepts that begin to ad-
dress these questions.
Ontogeny and developmental biology of the osteoblast

Osteoblasts are highly specific bone cells lining and formulating the
mineralized matrix of the skeleton. They result from the osteogenic
differentiation of mesenchymal stem cells (MSCs) and pass through a
series of pre-osteoblastic stages as osteoprogenitor cells [12], until
they become fully functional osteoblasts. When making bone, osteo-
blasts first deposit a dense organic extracellular matrix, primarily
collagen I, and then harden this matrix by producing an inorganic
calcium and phosphate-based mineral, hydroxyapatite. Different types
of bone are formed by osteoblasts throughout the skeleton during
skeletogenesis, remodeling, and fracture healing, including lamellar
bone and woven bone [13]. During embryonic development, bone
forms predominantly through a complex process termed endochondral
ossification, a process including an intermediate cartilage stage [14]. A
smaller fraction of human bones, such as the plates of the skull, are
formed by intramembranous ossification, a process of direct differenti-
ation of MSCs into mineralizing osteoblasts.

Osteoblasts in distinct anatomical locations respond uniquely to dif-
ferent stimuli and would likely respond differently to tumor cells, com-
plicating studies aimed at using osteoblasts to inhibit multiplemyeloma
and other osteolytic cancers. What governs osteoblast phenotype and
bone turnover in different bone compartments is largely unknown,
but much work has been done to unravel the signaling mechanisms,
pathways and relationships governing osteogenesis [15,16]. In 2009,
Colnot [17] provided direct evidence that the major sources for skeletal
stem cells are the periosteum, endosteum, and bone marrow and that
while each give rise to osteoblasts, only the periosteum gives rise to
chondrocytes, implicating different cellular populations within each
distinct microenvironment. The periosteum also contributes to the
growth and healing of long bones, demonstrating important differences
in cell populations within various anatomical locations [18]. Recent ev-
idence demonstrates that Wnt16 knockout mice have lower cortical
bone mass, but no changes to their trabecular bone mass [19], whereas
prior reports provide evidence that Wnt10a is necessary for trabecular
bone formation, but not for cortical bone formation or maintenance
[20,21]. These studies, and others using Klotho, Src, and Sfrp4 null mice
[22], demonstrate that osteoblasts and osteoclasts from different
anatomical locations respond differently to ligands, trauma/disease,
and treatments. This is also found clinically, where some therapeutics
show different effects on long bones compared to vertebrae, or cortex
versus trabeculae [23]. In sum, these studies suggest that osteoblast
progenitors derived from these different locations may have disparate
effects on bone remodeling and possibly cancer growth. This is a key nu-
ance often ignored butwhichmust be thoroughly understood before ef-
fective bone anabolic agents can be designed and targeted successfully.

Effects of osteoblasts on multiple myeloma

Unlike bone marrow MSCs, which support myeloma disease pro-
gression [24–26], evidence suggests that osteoblasts may suppress my-
eloma [27]. Osteoblast-derived growth factors play a large role in
stimulating the growth of prostate cancers within the bone [28], raising
the question of why this does not occur inmyeloma. It is not clear if my-
elomacells responddifferently to these sameosteoblast-derived factors,
or if myeloma cells, like prostate cancer cells, actually benefit from oste-
oblasts, but proliferate even more strongly when they activate osteo-
clastic activity rather than osteoblastic activity. It is interesting that,
although very rare, myeloma can also cause osteosclerostic lesions,
without other symptoms of POEMS syndrome, suggesting again the
possibility that osteoblastic activity may not necessarily be detrimental
to plasma-cell-proliferative disorders [29–33].

As recently reviewed by Olechnowicz and Edwards [34], there are
numerous other components of the host bone marrow that contribute
to the pathogenesis ofmultiplemyeloma, includingfibroblasts, immune
cells, adipocytes, endothelial cells, and osteoclasts. Contributions from



Fig. 1. The osteoblast as a central mediator of multiple myeloma growth. Multiple myeloma is a disease of the plasma cell. Multiple myeloma tumor cells grow within the bonemicroen-
vironment. Increasing evidence shows that osteoblasts play a central role in regulating the growth of multiple myeloma in the bonemarrow through direct interactions or influences on
other bonemarrowniche cells.Within the bonemicroenvironment (left), osteoblasts secrete factors such as decorin (A) that directly lead tomyeloma cell apoptosis and cell cycle arrest. In
a reciprocal interaction, myeloma cells suppress osteoblast generation via DKK1. In addition, osteoblasts recruit immune cells to the bone marrow (B) where they can have anti-tumor
effects, although recruitment of regulatory T cells and myeloid-derived suppressor cells can promote myeloma growth by inhibiting the anti-tumor immune response. (C) Increased os-
teoblastic activity leads to increased osteoclast activity, which can promote the survival and proliferation of myeloma cells. In turn, myeloma cells increase osteoclastic activity. (D) The
mesenchymal stem cell within the marrow niche can have direct positive effects on myeloma cells and also determines the balance of resident osteoblasts and adipocytes. (E) The con-
tribution of marrow adipocytes is still under active investigation, but marrow adipocytes may suppress normal hematopoiesis, leading to the development of myeloma cells. Other sys-
temic influences (right) include adipose tissue, which, under conditions of excess adipocyte accumulation, induces systemic inflammation and release of adipokines and estrogen that
may promote myeloma growth and survival.
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the sympathetic nervous system and abnormalities in the myeloma-
associated extracellular matrix also can support multiple myeloma pro-
gression. Perturbation of the osteoblast can lead directly, and spontane-
ously, to myelodysplasia or AML [35,36], demonstrating the critical
influence of the bonemicroenvironment on hematologicalmalignancies.

Direct effects of osteoblasts on myeloma growth

Biology of direct effects of osteoblasts on myeloma cells
Osteoblasts have been reported to directly inhibit multiplemyeloma

cells in vitro. One group demonstrated that some osteoblastic cells
(MC3T3-E1 pre-osteoblastic cells and bone marrow-derived stromal
cells), when differentiated into mineralized osteoblasts, induce apopto-
sis and cell cycle arrest in myeloma cells (i.e., cells such as RPMI8226,
U266, KMS-12, INA6, 5TGM1, and primary patient samples) [27].
Decorin, the main small leucine-rich proteoglycan produced by osteo-
blasts, has also been identified as an endogenous, osteoblast-derived
factor that suppresses multiple myeloma cell growth and survival [37].
In general, however, there is controversy about the net effect of osteo-
blasts on myeloma cells, as osteoblasts also produce factors that could
support myeloma growth, such as osteocalcin, osteopontin, fibroblast
growth factors, and transforming growth factor beta family members,
although direct studies on this are lacking. One study demonstrated
that quiescent myeloma cells prefer to reside in the endosteal/osteo-
blastic regions of the bonemarrow compared with the vascular regions
or spleen, indicating that osteoblasts may play a unique role in main-
taining myeloma cells within a specific niche [38]. Another study
showed that osteoblasts may be either supportive or inhibitory of mul-
tiple myeloma cells, and interestingly, these effects were dependent on
the patient source of myeloma cells [39,40]. A better understanding of
the direct anti-myeloma effects of osteoblasts is mandatory before
bone anabolic treatments can be used successfully to inhibit multiple
myeloma progression.

In vitro challenges of studying osteoblasts and myeloma interaction
There are several challenges that must be overcome to understand

the role of osteoblasts in impeding myeloma growth. First, in vitro co-
culture studies with plasma cells and osteoblasts are limited by the
lack of relevant osteoblast cell lines. The human bone marrow stroma
cell lines HS-5 and HS-27 do not differentiate into osteoblasts, and
other cell lines that do mineralize, such as Saos2 [41] and MG-63 [42],
are actually osteosarcoma rather than osteoblast cell lines. Certain cell
lines, such as the human fetal osteoblastic cell line hFOB1.19 [43],
which proliferate at 33.4 °C and differentiate at 39.4 °C or in osteogenic
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medium, have been explored inmultiple myeloma in vitro cultures [44]
and could be exploited further. The two best options for osteoblast
models may be primary human osteoblasts [45], or primary bone
marrow-derivedMSCs, which can be expanded and then induced to dif-
ferentiate into mineralizing osteoblasts [24,46]. The challenge with
using differentiated MSCs to model osteoblasts is delineating the mo-
ment when an MSC becomes a “pre-osteoblast,” or has matured into a
fully differentiated osteoblast, or has overshot the osteoblast stage to
become an osteocyte. If the MSC is not differentiated far enough down
the osteogenic pathway, it may still appear as a supportive stromal
cell, accelerating the growth of myeloma cells rather than inhibiting
them, as it is believed that osteoblasts may do in vivo. The mouse cell
line MC3T3-E1 [47] is a well-accepted albeit unique pre-osteoblast cell
line that undergoes linear osteogenic differentiation. Primary mouse
calvarial osteoblasts are also widely used [48], but studies with mouse
osteoblasts add some risk of missing human cell-specific signaling.

A second challenge for studying direct effects of osteoblasts on mul-
tiple myeloma is that, as with myeloma-derived MSCs [49], myeloma-
derived osteoblasts differ substantially from their healthy-donor coun-
terparts [50]. Specifically, their proliferation and osteogenic potential
are significantly inhibited and their expression of the CCL3 receptor
(CCR1) is significantly increased, which is one pathway contributing
to their decreased osteogenic capacity [50]. By studying interactions be-
tween normal osteoblasts and myeloma cells, we may not observe the
changes that occur in patients, which are between myeloma cells and
myeloma-associated osteoblasts. Future studies may more accurately
understand the relationships between these cells types if myeloma-
patient-derived osteoblasts are utilized.

A third challenge to studying the direct effects of osteoblasts on mye-
loma cell growth relates to the in vitro conditions inwhich co-cultures are
maintained. Most in vitro cultures are performed in two-dimensions on
flat tissue-culture plates, but models to better mimic the physiologically
relevant three-dimensional (3D) nature of the bone microenvironment
are now become more established [24,51,52]. Tissue-engineered 3D
bone built on silk scaffolds allows for highly reproducible, cost-effective
replicates of cultures of osteoblasts and myeloma cells and can be used
tomodel the process of differentiation ofMSCs into amineralized, porous
artificial bone environment. These cultures are now being adapted to
model the interactions between myeloma cells and any other cells, in
the microenvironment, to better elucidate MM-bone stromal cell rela-
tionships (unpublished data).

Indirect effects of osteoblasts on myeloma cells through interaction with
other cells

Osteoclasts
Themostwell-documented osteoblast relationship in the bone is the

forward-feedback mechanism with osteoclasts known as remodeling.
Increased osteoblastic activity leads to increased osteoclastic activity,
which can then trigger recruitment of more osteoblasts and vice versa.
This cycle is essential for maintaining bone mass and strength [53].
The pathophysiology of myeloma-induced bone disease progressing
through the “vicious cycle” occurs when myeloma cells hijack the nor-
mal bone remodeling process and skew the balance towards increased
osteolytic processes. This state of inhibited osteoblastic activity and in-
creased osteoclastic activity, stimulated through molecules such as
RANKL from myeloma cells and osteoblasts [54], leads to osteolytic le-
sions, weakened bone, pathological fracture, and a release of bone-
embedded growth factors that further promote tumor cell growth [2,
4,55].

Osteoclasts not only degrade bonematrix to release tumorigenic fac-
tors, but also directly promote the survival and proliferation ofmyeloma
cells [40]. Hence, it is possible that use of bone anabolic treatments to in-
crease osteoblastic activity would have a counter effect of also stimulat-
ing osteoclastic activity, thereby mitigating the tumor-suppressing
effect of newly formed osteoblasts. Similarly, decreasing osteoclastic
activities through agents such as bisphosphonates may have the oppo-
site effect, due to the subsequent suppression of osteoblast function
in vivo, hence diminishing any potential osteoblastic anti-multiple my-
eloma action. Therefore, understanding the regulation of the timing, lo-
cation, and responses of osteoclasts to osteoblasts, and the reverse, is
crucial for optimizing bone anabolic treatment regimens.

Adipocytes
There is growing interest in understanding interactions between

bone and fat cells in normal physiology anddisease, and the dynamic re-
lationships between osteoblasts andmarrow adipocytes are likely to af-
fect multiple myeloma within the microenvironment in numerous
ways. Previously, it was thought that obesity was associatedwith stron-
ger bones, butmore evidence has surfaced that obesity and osteoporosis
share common genetic and environmental factors and that excessive fat
and obesity may not protect against osteoporosis but could, in fact, ac-
celerate it [56]. The interaction between adipocytes and osteoblasts
has traditionally been considered as mutually exclusive such that the
transcription factors that induce osteoblastogenesis inhibit adipogene-
sis and vice versa [56]. Interestingly, there is a significant degree of lin-
eage plasticity between adipocytes and osteoblasts, which share a
common progenitor, that further complicates dissecting the relation-
ship between these two cell types in healthy and cancer-containing
bone marrow [57,58]. Recent evidence suggests, however, that bone
marrow adipocytes may derive from a progenitor cell distinct from
the progenitor for osteoblasts, chondrocytes, and other bone marrow
stromal cells [59,60].

There are also intriguing data that suggest adipocytes may regulate
the pathogenesis and progression of multiple myeloma. A high body
mass index (BMI) correlates with increased risk for multiple myeloma
[61,62], possibly through increased conversion of androgens to estro-
gens that in turn stimulate estrogen receptor positivemultiplemyeloma
cells [63–65]. High BMI may also lead to increased multiple myeloma
development through increases in inflammatory mediators or CCL2-
and COX-2-driven pathways that stimulate tumor growth in the bone
marrow [66], but more mechanistic studies are needed to understand
these signals. In vitro experiments have demonstrated a role for adipo-
cytes in increasing the proliferation of multiple myeloma cells, but
whether this is mediated by leptin or other adipokines has not been re-
solved [67]. Increased bonemarrow adiposity in high BMI patients may
also support multiple myeloma progression through the disruption of
normal hematopoiesis and immune function [68]. In contrast, other re-
ports have shown no difference, or even better overall survival or pro-
gression-free survival with certain treatments (e.g., melphalan and
total body irradiation) in obese and extremely obese patients compared
with normal and overweight patients [69]. Based on preliminary data, it
appears that increasing osteoblastic differentiation and activity could
decrease myeloma activity in part by decreasing the recruitment of ad-
ipocytes within the bone marrow niche, but this remains an open area
of research.

Hematopoietic niche and immune cell interaction with myeloma cells
Because the osteoblastic niche is also a site for hematopoietic stem

cell (HSC) and immune cell homing and homeostasis [70], osteoblasts
may inhibit multiple myeloma growth partially by supporting anti-
myeloma immune cell homing to the bone marrow. However, specific
types of osteoblasts may play different immune supportive roles, as it
appears that only a subtype of osteoblasts, those termed spindle-
shaped N-cadherin+/CD45- Osteoblasts (SNOs), located next to the
endosteal surface of bone, function to retain the so called Long-Term
(LT)-HSCs in a quiescent status [12]. The relationship between osteo-
blasts and immune cells is complex. For example, although sclerostin
null mice have high bone mineral density, they have increased B-cell
apoptosis due to decreased osteoblast-derived CXCL12, resulting from
increased Wnt signaling [71]. Moreover, although the immune system
in general suppresses multiple myeloma [72], not all immune cells
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mediate this role. Regulatory T-cells and immunosuppressive myeloid-
derived suppressor cells [73] are now being identified as important
new targets that inhibit the immune response in multiple myeloma
[74]. Interestingly, cellular immunity was found to be decreased in my-
eloma patients, including decreased ratio of CD4+/CD8+, DC1/DC2, and
Th1/Th2 cells, as well as an increased ratio of regulatory T cells, and
some of these metrics of immune function (CD4+/CD8+ ratio and
CD4+CD25+/CD3+T ratio) were significantly positively correlated
with the quantity of osteoblasts [75]. Hence, the potential effects of os-
teoblast loss on multiple myeloma via inhibition of the immune system
require further investigation.

Other cells in the osteoprogenitor lineage

MSCs, the osteoblast progenitors, andmyeloma progression. Bonemarrow-
derivedMSCs are osteoprogenitor cells capable of differentiating into os-
teoblasts, adipocytes, and chondrocytes, among other cells, andmuch re-
search has demonstrated their support of multiple myeloma adhesion,
growth, and drug-resistance in vitro [24–26,76]. The expression of signal-
ing cytokines, extracellular matrix factors, and adhesion molecules is the
basis for their important role in myelomagenesis, bone marrow homing,
and proliferation [24,77–80]. MSCs frommyeloma patients are abnormal
in terms of osteogenic differentiation, proliferation, gene expression, and
other functions [24,49,81]. By inhibiting osteogenic differentiation of
MSCs, multiple myeloma cells may be cleverly retaining a population of
cells known to support their survival while inhibiting the maturation of
osteoblasts, which generate bone matrix and have suppressive effects
on myeloma cells.

In vitro, both osteoblasts and osteocytes can support MSC osteogen-
esis, in part due to soluble osteogenic cytokines [82]. However, osteo-
blasts seem to support an initial proliferation of MSCs and a delayed
differentiation, while osteocytes promote an initial osteogenic differen-
tiation [82]. However, contrasting theHSC niche roles of osteoblasts, it is
less well understood how osteoblasts affect MSC homing, quiescence,
and differentiation in vivo in healthy bone marrow, and even less so in
myeloma-infiltrated bone marrow.

One study found that human placenta-derived adherent cells
(PDACs), a type ofMSC, inhibit H929myeloma cell growth in a subcuta-
neous tumor model (tumor cells grown subcutaneously, later injected
with PDACs). However, when the tumor was grown instead in a rabbit
bone that was implanted subcutaneously into a SCID mouse (the
SCID-rab model), the injected PDACs inhibited growth of H929 myelo-
ma cells [82]. This may indicate that MSCs in multiple myeloma are
dependent on the presence of the bone microenvironment to show
anti-myeloma effects. Hence, osteoblasts may be essential regulators
of the osteoprogenitor phenotype, and they may support a more anti-
myeloma phenotype in MSCs.

Osteocytes, the osteoblast descendant, andmyeloma progression.Upon be-
coming encased in osteon, osteoblasts become osteocytes andplay a key
regulatory role in bone homeostasis, osteoclast activity, and osteoblast
regulation. Osteocytes are the mechanosensing cells that reside in lacu-
na and connect with each other through dendritic processes extending
through lacunar-canalicular networks. They have been considered
switchboard operators, as they direct a number of different signals
that control cells behavior. For example, they extend processes into
the vasculature within the bone, and out into the osteoblast-lined sur-
faces of the marrow and periosteum. With age, these lacunar-canalicu-
lar networks become compromised with large sections of bone lacking
live osteocytes, suggesting one mechanism whereby diseases that
have increasing incidence with age, such as myeloma, may have en-
hanced growth potential and progression. In several cancers, it has
been shown that osteocytes affect tumor evolution through a number
of local signaling and endocrine mechanisms [12,83,84].

The relationship between osteoblasts and osteocytes is complicated
by the addition ofmyeloma cells. Since osteoblasts give rise to osteocytes
as they become encased in bone matrix, myeloma inhibition of osteo-
blasts and osteoblastic activitymay be amajor cause of the decreased os-
teocytes observed in clinical samples [85]. However, since osteocytes are
one of the major producers of sclerostin, a Wnt antagonist, a decrease in
osteocytes for any reason typically decreases sclerostin levels, which
then stimulates osteoblastic activity to produce a stable bone equilibri-
um. Unfortunately, the net balance in multiple myeloma patients is
osteolysis and loss of osteoblasts/osteocytes; the attempt by the bone
to normalize itself is futile and eventually toppled by the burden of oste-
oclastic activity. Formore on the roles of osteocytes inmultiplemyeloma,
refer to the elegant review by Roodman et al. [86].

Canopy-lining cells, the osteoblast cousin, and myeloma progression. Al-
though similar in lineage to active, bone-matrix-secreting osteoblasts,
canopy lining cells are quiescent, bone marrow protecting cells. These
cells isolate areas of turnover to create a tightly connected, single-cell
wide physical barrier to seal-off the osteoclast/osteoblast resorption
pit from the marrow [87]. The relatively flat, elongated cells immuno-
stain for osteoblast markers osteocalcin, osteonectin, pro-collagen
type I (PINP), pro-collagen type III (PIIINP) and NCAM (CD56), demon-
strating that the cell originates from the osteoblast lineage [88]. Impor-
tantly, they are Ki-67 negative (hence, non-proliferative) and negative
for lymphocytic and monocytic markers. How these cells differ, if at
all, from the more classically described quiescent bone lining cells re-
mains to be delineated

Canopy lining cells may play an important role in the dysregulation
of bone remodeling in general [89] and could be a novel target cell type
inmultiplemyeloma. Osteoblasts seem to require these cells to properly
lay down matrix, as multiple myeloma biopsies analyzed for the pres-
ence of these canopies over the bone remodeling compartment (BRC)
demonstrated frequent disruptions in 66% of the biopsies. Importantly,
frequent disruption (holes) in the canopies correlated with extensive
resorption without matrix reconstruction, not observed in biopsies
with normal, intact canopies over the BRCs [83,88,90]. Only in multiple
myeloma bone surfaceswith disrupted canopies did the researchers ob-
serve an absence of coupling between bone formation and resorption in
patient biopsies [90]. It remains to be determined if BRC canopydestruc-
tion in multiple myeloma is a cause or result of deficient bone forma-
tion. The microanatomical structures may function through multiple
unclear mechanisms (e.g., exerting physical constraints for cells or
chemoattractants or acting as anchorage points for certain progenitors),
but it is evident that their disruption results in direct physical contact
between myeloma cells, osteoclasts, and osteoblasts, and coincides
with the occurrence of osteolytic lesions.

Systemic effects

Osteoblasts, osteoclasts, and osteocytes contribute not only to local
modifications of bone but also to systemic changes in whole body ho-
meostasis through secretion of specific peptides and growth factors.
Traditionally, the action of these cells define the bone as an endocrine
organ, responding to hormones and soluble signaling molecules such
as estrogen via estrogen receptor α (ERα) [91], calcium, PTH, 1, 25-
Dihydroxycholecalciferol, and vitamin D, which communicate with
other endocrine organs throughout the body, such as the thyroid, para-
thyroid, pituitary glands, adrenal glands, and pancreas, as reviewed
elsewhere [92].More recently, the secretion ofmetabolically active pep-
tides such as osteocalcin has been shown to regulate insulin sensitivity
and secretion. During states of high bone turnover, the release of matrix
and cell-derived undercarboxylated osteocalcin impact adipose tissue
sensitivity to insulin which in turn could release adipokines that further
modulate myeloma progression [93]. On the other hand, bone metabo-
lismmay appear normal, as judged by biochemical measurements such
as urinary excretion of calcium, hydroxyproline, and n-telopeptide, but
significant bone destruction may be present. Hence, experiments to
alter the local bone milieu, to dissect the roles of osteoblasts on
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myeloma growth, must be performed in conjunction with monitoring
other systemic changes resulting from alterations of osteoblasts. Mea-
suring bioactive factors that are liberated during bone destruction may
help quantify bone turnover, but cannot be used as a definite readout,
due to a variety of confounding systemic effects resulting from osteo-
blast stimulation or inhibition [6].

In vivomodels of osteoanabolism as a therapeutic approach tomul-
tiple myeloma

Osteoanabolic treatment is defined as any treatment that stimulates
osteoblastic activity and bone formation. As a therapy for multiple mye-
loma, this strategy has yielded conflicting conclusions, with in vivo effica-
cy depending on the model system and treatments used. Some mouse
models, such as the patient xenograft SCID-hu model, demonstrated
that osteoanabolic treatments hold promise for inhibitingmultiple mye-
loma, although results were highly variable and patient-specific [40].
There is mounting evidence that the anti-myeloma proteasome inhibi-
tors carfilzomib [94] and bortezomib [95] have bone anabolic effects on
bone and induce osteogenic differentiation of MSCs, whichmay contrib-
ute to their anti-myeloma effects [96], but concrete evidence remains
elusive to demonstrate that these agents can produce anti-myeloma ef-
fects via changes in the bone microenvironment. The use of anti-
resorptive agents, such as bisphosphonates, cathepsin K inhibitors, or
RANKL inhibitors [54], in combination with osteoanabolic agents, may
maximize the use of the bone microenvironment to inhibit myeloma.
Collectively, these results highlight the need for better in vivo models
and deeper understanding of exactly how we predict osteoanabolic
treatments may function to inhibit multiple myeloma.

Anti-sclerostin and anti-DKK1 antibodies also have osteoanabolic ef-
fects in preclinical models and in clinical trials and are currently under
investigation for the treatment of osteoporosis and osteolytic disease
[97,98]. Anti-sclerostin treatments may prove useful for osteolytic can-
cers in general, but especially for myeloma, since myeloma cells secrete
sclerostin that inhibits osteoblast activity [99]. Anti-DKK1 treatments
may also be viable mechanisms for inhibiting myeloma bone disease,
as DKK1, a canonicalWnt pathway inhibitor, is overexpressed inmyelo-
ma cells and patient serum [100], andDKK1 levels correlatewith the ex-
tent of lytic bone disease [101]. Anti-DKK1 antibody therapy has also
been shown to significantly increase osteoblast bone formation and
bone mineral density in both murine and human healthy and multiple
myeloma models [97,102,103]. Anti-DKK1 therapy in myeloma also in-
hibits osteolysis in multiple myeloma SCID-rab models (SCID mouse
with rabbit bone subcutaneous implantation) [104]. However, the
rates of success at lowering IgG levels or decreasing tumor growth
rate, measured by tumor size, were only 36% (4/11) and were patient
specific, suggesting that bone anabolic treatments may work only for a
subset of myeloma patients [104]. A different myeloma model used to
test anti-DKK1 antibodies is the SCID-hu model with fetal bone chips
in a SCIDmouse, injectedwith INA-6myelomacells. In thismodel, treat-
ment with the Novartis antibody BHQ880, which neutralizes both
human and murine DKK1, promoted osteoblastogenesis and decreased
tumor burden, as measured by in vivo IL6 levels [102].

Other bone anabolic agents, including dasatinib, a multitargeted ty-
rosine kinase inhibitor [105], and soluble decoy receptors of activin A, a
known osteoclast activating factor [106], also inhibit multiplemyeloma,
suggesting their clinical utility and supporting the hypothesis that in-
creasing bone volume and osteoblast number is a practical method for
inhibitingmultiplemyeloma [107,108]. Similarly, TGF-β, a potent inhib-
itor of terminal osteoblast differentiation abundant in the bone matrix,
has also been identified as a novel target. Anti-TGF-β therapies are
able to restore osteoblast differentiation suppressed in MM conditions
in vitro and suppress myeloma cell growth within the bone marrow
(using the SCID-rab/INA6 myeloma model) while preventing bone de-
struction in myeloma-bearing animal models [27]. This study demon-
strated that osteoblasts, defined as mineralized MC3T3-E1 cells, were
able to induce apoptosis and G1 cell cycle arrest in 5TGM1 myeloma
cells, although the exact mechanisms by which osteoblasts potentiated
these effects were not explored [27].

In vivo studies using daily administered parathyroid hormone (PTH)
in SCID-rab and SCID-hu mouse models demonstrated that PTH treat-
ment increased bone mineral density and reduced tumor burden
[109]. PTH also increased the number of osteoblasts and other bone
formation parameters and pre-treatment with PTH before injecting
tumor cells also increased bone mineral density and delayed tumor
progression. This research supports the hypothesis that an increase in
bone mineral density and osteoblast number may provide a net anti-
myeloma effect. Importantly, PTH can clinically lead to increased bone
formation and osteoblast activitywithin thefirst 6months of treatment.
However, with longer-term PTH administration, osteoblast activation
slows, and importantly, bone resorption increases significantly. Theo-
retically, this could compromise any positive effects of this approach
for slowing myeloma progression [110]. Thus, osteoanabolic therapies
for bone utilize a range of different approaches and target pathways,
nicely summarized in a recent review [111]. However, it still remains
controversial whether reported anti-tumor effects of bone-modulating
therapies are clinically significant [112]. The current challenge inmyelo-
ma therapeutics thus becomes not only to develop biologic agents that
have the desired effect of killing cancer cells but also to prevent any re-
bound or compensation that could make the skeletal changes worse.

Clinical studies have shown that the treatment of multiple myeloma
patients with bisphosphonates significantly overall survival and
progression-free survival [113,114]. Zoledronic acid and bortezomib
both have anti-myeloma effects. Zoledronic acid is thought to directly
impact myeloma cells, and bortezomib additionally may induce “pro-
bone” mechanisms, including increasing osteogenic differentiation and
inhibiting osteoclasts [95,115]. In fact, based on these studies, a phase
II clinical trial recently completed in smoldering multiple myeloma pa-
tients treated with low dose bortezomib had a primary endpoint, “to
evaluate the bone anabolic effect of bortezomib in patients with smol-
dering myeloma” and a secondary endpoint “to evaluate the effect of
bortezomib on the natural history of smoldering myeloma” [116]. An-
other interesting phase II trial in the recruitment stage aims to test
Sotatercept, an activin-A antagonist that interfereswith the SMADpath-
way. This signaling network,when activated, can lead to increased bone
formation and anti-tumor activity in multiple myeloma [117] and bone
anabolic improvements in bone mineral density and in bone formation
[118]. The effects of Sotatercept on patient-specific outcomes such as
skeletal-related events (i.e., fractures, impaired healing, bone pain) as
well as delayed-progression, or progression-free or overall survival, re-
main to be elucidated. Results from these ongoing and future trials may
open the door for similar treatments to be tested in patients with early
stage or even overt myeloma.

Future directions and conclusions

One of the new directions in osteoblast-myeloma research, and in
tumor-host interaction studies in general, is the use of CRISPR-Cas9
knockout technologies [119].With this technology, researchers have al-
ready demonstrated an ability to more specifically target genes such as
Ikaros family zinc finger proteins 1 and 3 (IKZF1 and IKZF3) inmyeloma
and hence dissociate the anti-tumor and teratogenic activities of
thalidomide-like drugs [120]. The use of CRISPR technologies for modu-
lating host osteoblasts and bone marrow cells would provide abundant
information regarding the roles of different genes in bone cells and
could suggest novel mechanisms for modulating the bone microenvi-
ronment to induce a less hospitable environment for the growth of can-
cer cells. Also, if investigators can overcome the obstacles and potential
off–target effects of microRNA delivery, these may be a potential novel
osteoanabolic treatment. “Osteogenic microRNAs” have been identified
[121] and are currently under investigation for in vivo efficacy. Interest-
ingly, some of these have been identified as differentially expressed in
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multiple myeloma versus healthyMSCs and capable of functionally res-
cuing MSCs for their ability to produce bone matrix [24].

Multiple myeloma is considered by some a prototype for metastatic
bone disease although there are clear phenotypic distinctions from
other malignancies such as prostate cancer. Nevertheless, studies of os-
teoblastic function in myeloma could be extrapolated to other condi-
tions that have classically been considered osteolytic, such as
metastatic breast cancer [122–125]. This review described the multi-
tude of ways in which osteoblasts may function to support or inhibit
myeloma growth, and discussed new potential targets in the relation-
ship between osteoblasts andmyeloma cells to treat or preventmultiple
myeloma. Osteoblasts act as an important hub of activity, affecting other
cells within the bonemarrow niche andmediating both direct and indi-
rect effects on myeloma cells (Fig. 1). The future of bone anabolic treat-
ments for anti-myeloma therapy is bright, but to optimize the use and
design of such agents, it will be critical to view the osteoblast within a
larger context and to visualize its interactions with other cells in the
bone microenvironment and roles in whole body homeostasis.
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