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The phosphoinositide 3-kinase (PI3K) pathway has a crucial role in
tumor progression and drug resistance, including both conven-
tional chemotherapeutics as well as novel agents.1 Although no
mutations have been described in the PI3K/Akt genes in multiple
myeloma (MM), it was shown that this pathway is constitutively
activated in MM cells and has pleiotropic effects influencing
proliferation, drug resistance, angiogenesis and cell adhesion.2

PI3Ks are divided into three subclasses, and of these, class I
PI3Ks—p110a (also known as PIK3CA), p110b (also known as
PIK3CB), p110g (also known as PIK3CG) and p110d (also known as
PIK3CD)—are well described in terms of their role in cancer
development and progression.1,3 PIK3CA is frequently mutated in
solid tumors including carcinoma of the prostate, breast colon and
endometrium.4,5 However, there have been no reports of cancer-
specific mutations in MM.6

Recently, a number of potential therapeutics targeting specific
PI3K groups or isoforms were developed.3,4 Previous studies have
indicated that p110a, p110b and p110d might be potential targets
for MM.7–9 Although the basic framework of PI3K signaling has
been uncovered, the contribution of the different PI3K isoforms is
not well understood.4 In the current study, we investigated the
functional role of class I PI3K isoforms in modulating MM cell
trafficking in vivo and in vitro.

To examine activation of the PI3K/Akt pathway in MM, we first
performed gene set enrichment analysis10 on the gene-expression
data set (Shaughnessy et al. ref. GSE24080) of patients in different
International Staging System stages of MM compared with normal
donors;11 and found enrichment of genes related to class I PI3K-
activated AKT signaling events. These findings were observed in
stage I, II and III MM patients compared with healthy individuals
(Figure 1a).

To study the role of each isoform (p110a, b, g, and d) in
regulating MM cell survival and trafficking in vivo and in vitro, the
expression of PI3K isoforms was examined in a panel of eight MM
cell lines showing different levels of expression of PI3K isoforms
with only MM.1S expressing all isoforms (Figure 1b). Thus, MM.1S-
GFPþ /lucþ was infected with lentivirus-mediated small hairpin
RNAs targeting the different PI3K isoforms. Stable cell lines were
generated, and efficiency of knockdown for each isoform was
confirmed by reverse transcription quantitative PCR (Figure 1c).
Specificity of knockdown was demonstrated by immunoblotting
in cell lines using specific antibodies against each isoform
(Figure 1d). Then, we evaluated the effect of each isoform on
PI3K–Akt signaling in MM cells in the context of primary MM bone
marrow mesenchymal stromal cells (BM-MSCs) and found inhibi-
tion of BM-MSC-dependent induction of phospho(p)-Akt in MM
cells with all PI3K isoforms silenced in the tumor clone (Figure 1e).
Although p110a, b, and d showed a modest reduction in cell
survival in vitro (Figure 1f), cell cycle analysis revealed no
significant difference on cell cycle distribution patterns
(Supplementary Figure 1). We next performed adhesion assay of
MM cells to primary MM-derived BM-MSCs; and found that by
silencing each of class I PI3K isoforms, MM cells inhibited their

adhesion properties, with the p110b and p110d knockdown being
the most effective (53% reduction and 47% reduction, respec-
tively; Po0.001, Po0.01; Figure 1g).

To test the effect of the different p110 isoforms on MM tumor
progression in vivo, SCID-Bg mice were injected with MM
cells silenced for p110a, b, g and d, and tumor development was
monitored by bioluminescence imaging. Scramble-infected cells
were used as control. In consistent with in vitro data demonstrating
that the most significant changes were observed for adhesion of
MM cells to BM-MSCs in p110b and p110d knockdown cells, tumor
progression was significantly lower in p110b- and p110d-knock-
down cell-injected mice compared with scramble cell-injected
mice (Po0.05); whereas tumor growth observed in p110a- and
p110g-knockdown cell-injected mice was similar to control mice
(Figures 2a and b). We speculate that this might be due to
markedly decreased tumor cell growth triggered by MM cell
adhesion to BM-MSCs, as the adhesion of MM cells to BM-MSCs
activates many pathways and has a vital role in MM pathogenesis
and disease progression.12 We further confirmed that tumor
cells showed knockdown for each p110 isoform, as demonstrated
ex vivo on tumor cells harvested from each cohort of mice
(Figure 2c). Mice were followed until the development of hind
limb paralysis or death, and Kaplan–Meier analysis was performed
showing prolonged survival in all groups except p110a mice
(p110b and p110g, Po0.05; p110d, Po0.001; Figure 2d). Despite
similar tumor burden observed between p110g mice and
scramble control-injected mice, mice injected with p110g knock-
down cells had improved survival compared with control mice.
This might be due to the different extent of tumor involvement of
various organs13 between the two groups, thus explaining the
differences in survival.

Interestingly, our data indicate that p110a is not critical for the
survival of MM cells in vivo. Unlike most solid tumor malignancies,
where PI3KCA (p110a) mutation is the leading cause of activation
of this pathway and is the target of many therapeutic agents in
development,3 there have been no reports of this specific
mutations in MM.6 Moreover, it was shown that unlike wild-type
p110a, overexpression of the wild-type p110b, p110g and p110d is
sufficient to induce an oncogenic transformation of fibroblasts in
cell culture.14

In this study, p110b was highly expressed in all MM cell lines,
whereas only a minor subset expressed p110d at the protein level
(Figure 1b), which is consistent with a recent report9 showing
expression of p110b in 38 MM cell lines in comparison to the
detectable expression of p110d in only 4 cell lines. In addition,
another study8 reported similar findings in cell lines showing lack
of p110d expression in most MM cell lines. Of note, we found
discrepancies in p110d expression in cell lines between our study
and prior published studies but our data was confirmed in the
Cancer Cell Line Encyclopedia data at the mRNA level (data not
shown).15 Importantly, Ikeda et al.8 evaluated p110d levels in
patient samples and detected its expression in all 24 MM patients.
This may provide a clinical rationale for targeting p110d despite
the lack of expression of p110d in MM cell lines.

Overall, our data suggest that, in contrast with solid tumors, MM
may be more dependent on PI3K p110b and p110d and less
dependent on PI3Ka, and these may be the focus of drug
development in this hematological malignancy.
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Figure 2. (Continued)

Figure 1. The role of class I PI3K-mediated Akt signaling in MM. (a) Gene set enrichment analysis software analyzed functionally related genes
in class I-mediated Akt activation with statistically significant enrichment (false-discovery rate q-valueso0.25;o0.25 is considered significant),
using gene-expression data set (GSE24080). Plots show enrichment results for the gene set (left, stage I MM vs normal subjects; middle, stage II
MM vs normal subject; right, stage III MM vs normal subjects). (b) Baseline expression of the different PI3K isoforms (p110a, b, g and d) in MM
cell lines was detected by immunoblotting using isoform-specific antibodies. MM tumor cells (MM.1S-GFPþ /lucþ ) were infected with
lentivirus-mediated small hairpin (sh)RNA. Reverse transcription quantitative PCR (c) and immunoblotting (d) were performed to show
infection efficiency and isoform specificity, respectively. Scramble and knockdown tumor cells (p110a, b, g and d) were cocultured with BMSCs
overnight, and MM cells were then separated from the BMSCs, lysed and whole-cell lysates were subjected to immunoblotting (e) with Akt
and P-Akt (Thr308 and Ser473), which shows decreased phosphorylation of Akt in knockdown cells. The effects of inhibition of PI3K isoforms
by shRNAs on cell survival were assessed by 3-(4,5-dimethylthiazol-2-yl)2-2-diphenyltetrazolium bromide (MTT) assay (f ). Adhesion assay (g)
was performed to show the ability of knockdown cells to adhere to BMSCs after 2 h of incubation.
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Figure 2. Knockdown of PI3K isoforms regulates tumor progression and survival in vivo. MM.1S-GFPþ /lucþ tumor cell lines (Scr, p110a, b, g
and d) were injected intravenously into SCID-Bg mice and tumor growth was assessed by in vivo bioluminescence imaging (BLI).
(a) Representative BLI of each group in different time points is shown. (b) Quantification of BLI signals demonstrated that p110b and d mice
showed significant reduction in tumor growth (Po0.05) compared with scramble mice. (c) Reverse transcription quantitative PCR was
performed on tumor cells that were harvested from hind leg bones of animals by bone marrow flushing. (d) Survival of mice was evaluated
until complete hind limb paralysis or death using Kaplan–Meier curves. Compared with scramble mice, all groups except p110a showed
prolonged survival (p110b and p110g, Po0.05; p110d, Po0.001).
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