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The bone marrow (BM) microenvironment of multiple myeloma (MM) is reported to play a role in the
biology of disease. In this study, we found that the extracellular BM microenvironment in MM contains a
unique miRNA signature detectable by miRNA microarray and quantitative real-time PCR, which is
partially represented in the peripheral blood. Eleven miRNAs were significantly decreased in both BM and
serum of MM patients in comparison with controls. Evaluation of these miRNAs in plasma of a separate
cohort of MM patients and controls confirmed significantly aberrant levels of let-7a, let-7b, let-7i, miR-
15b, miR-16, and miR-20a in both serum and plasma. We then studied the myeloma precursor diseases
and found that a subset of the MM miRNAs exhibited aberrant expression in monoclonal gammopathy of
undetermined significance and smoldering myeloma. miRNA analysis of enriched CD138þ plasma cells
from MM and monoclonal gammopathy of undetermined significance found that most of the validated MM
BM signature miRNAs were significantly decreased in MM plasma cells. Gene expression profiling indicated
that multiple targets of the decreased miRNAs found increased expression in MM plasma cells, including
ATF2, HRAS, HDAC4, TGFB1, TGFBR1, and mitogen-activated protein kinases. The findings suggest that
these miRNAs are detectable in aberrant levels in the peripheral blood of patients with plasma cell
proliferation and may play a role in aberrant plasma cell proliferation and disease progression.
(J Mol Diagn 2015, 17: 669e678; http://dx.doi.org/10.1016/j.jmoldx.2015.06.006)
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Multiple myeloma (MM) is a malignant plasma cell (PC)
neoplasm that evolves from an underlying asymptomatic
precursor clonal PC proliferation designated monoclonal
gammopathy of undetermined significance (MGUS). MGUS
is present in >3% of the population aged >50 years and
progresses to myeloma at a rate of nearly 1% per year.1

Smoldering myeloma (SMM) represents an intermediate
entity with increased bone marrow (BM) clonal PCs without
symptomatic disease and carries an increased rate of pro-
gression to myeloma of nearly 10% per year.2 Currently, no
single factor can predict patients with MGUS that are likely
to progress to MM. A biomarker of disease progression in the
peripheral blood (PB) could assist in the early identification
stigative Pathology
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of patients evolving to MM. Recent data suggest that serum
miRNAs are altered in MM and MGUS and may serve as
diagnostic and prognostic biomarkers.3,4

miRNAs use a post-transcriptional gene regulation mecha-
nism that was shown to play a role in development, differen-
tiation, and tumorigenesis.5e7 miRNAs are evolutionarily
conserved small non-coding RNAs, which regulate gene
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Table 1 PCR and Reverse Transcription Primer and Probe Sequences

Primer
name Sequence

hsa-let-7a 50-GGGCCTGAGGTAGTAGGTTGTATAGTT-30

hsa-let-7b 50-GTGCCTGAGGTAGTAGGTTGTGTGGTT-30

hsa-let-7i 50-CTGGCTGAGGTAGTAGTTTGTGCTGTT-30

miR-106b 50-GTGCCTAAAGTGCTGACAGTGCAGAT-30

miR-155 50-GGGCCTTAATGCTAATCGTGATAGGGGT-30

miR-15a 50-GTGCCTAGCAGCACATAATGGTTTGTG-30

miR-15b 50-GTGCCTACTGTAGCAGCACATCATGGTTTAC-30

miR-16 50-GTGCCTAGCAGCACGTAAATATTGGCG-30

miR-192 50-GTGCCCTGACCTATGAATTGACAGCC-30

miR-19b 50-GCCAGTTTTGCAGGTTTGCATCCAGC-30

miR-206-3p 50-GTGCCTGGAATGTAAGGAAGTGTGTGG-30

miR-20a 50-GGGCCTAAAGTGCTTATAGTGCAGGTAG-30

miR-21 50-GGGCCCTAGCTTATCAGACTGATGTTGA-30

miR-223 50-GTGCCCGTGTATTTGACAAGCTGAGTT-30

miR-34a 50-GGTGGCAGTGTCTTAGCTGGTTGT-30

miR-361 50-GTGCCTTATCAGAATCTCCAGGGGTAC-30

miR-370 50-GCCTGCTGGGGTGGAACCTGGT-30

miR-595 50-GAAGTGTGCCGTGGTGTGTCT-30

miR-671 50-AGGAAGCCCTGGAGGGGCTGGAG-30

miR-939 50-TGGGGAGCTGAGGCTCTGGGGGTG-30

RNU6 50-CACGCAAATTCGTGAAGCGTTCCAT-30

RNU38B 50-GGGCAGTAAGTGAAGATAAAGTGTGTCTGA-30

RNU44 50-GGCAAATGCTGACTGAACATGAAGGTC-30

RNU48 50-CTCTGAGTGTGTCGCTGATGCC-30

RNU66 50-GGCTGAGGTGGTTCTTTCTATCCTAGT-30

PCR reverse
primer

50-GTCCGAGGTATTCGATCCTAAC-30

TaqMan
probe

50-/56-FAM/TCTCCTCGG/ZEN/TATCGAGTC-
GCACT/3IABkFQ/-30

RT anchor
primer

50-CGACTCGATCCAGTCTCAGGGTCCGAGGTAT-
TCGATCCTAACCCTCTCCTCGGTATCGAGTCG-
CACTTTTTTTTTTTTV-30
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expression by binding to the 30 untranslated region of target
mRNAs, leading to mRNA degradation or translational
repression.5e7 Individual miRNAs have the capacity to target
many mRNAs. Previous studies have reported the ability of
miRNA expression profiles to discriminate between specific
types of cancer and the normal corresponding host tissue, to
discriminate subclassifications of tumors,8,9 and to serve as
markers for disease prognosis and progression.10

miRNA is stable in PB. The profile of extracellular
miRNAs may vary between serum and plasma, possibly
related to platelet- or white blood cell-derived miRNAs,
which may be released during clot formation in serum
samples. Serum samples were shown to have higher levels
of extracellular miRNAs than plasma.11 Ideally, a robust
miRNA biomarker shed into the PB should be significantly
altered in both serum and plasma.

The BM microenvironment plays an important role in the
regulation of abnormal PCs in MM.12,13 Proposed mecha-
nisms include effects of soluble mediators shed into the
extracellular space, including cytokines, growth factors,
chemokines, and/or miRNAs13e15 or transfer of miRNAs
exogenously from cell to cell via exosomes with functional
capacity in the recipient cells.16 Previous studies have re-
ported aberrant miRNA expression in MM PCs associated
with genetic subtypes of MM.17e24 However, data on
miRNA levels in the extracellular BM microenvironment or
plasma of MM are virtually nonexistent, and studies of
miRNAs in serum of MM are rare.4,25

Materials and Methods

BM, Serum, and Plasma Samples

The extracellular supernatant fluid from BM aspirates was
obtained from 20 patients diagnosed with relapsed or re-
fractory MM and eight healthy controls (HCs) from Dana-
Farber Cancer Institute, Boston, MA, and from National
Cancer Center and National Heart, Lung, and Blood
Institute, Bethesda, MD. Of the 20 patients with MM, 6
were women and 14 were men; the median age was 64
years (range, 47 to 80 years). Available laboratory infor-
mation indicated that serum monoclonal proteins were
composed of 11 IgGk, five IgGl, two k light chain only,
and one l light chain only.

Plasma samples were obtained from a separate cohort of
17 pretreatment MM patients (median age, 56 years; range,
40 to 73 years) and 20 HCs (median age, 52 years; range,
23 to 72 years). Plasma MM samples were composed
of 11 IgGk, three IgGl, one IgAl, and two light chain
only. The median M-spike was 2.8 g/dL (range, 1.1 to 7.1
g/dL). Of the k-restricted MM cases, the median k:l ratio
was 62.7 (range, 2.89 to 10,235). Of the l-restricted cases,
the median k:l ratio was 0.03 (range, <0.01 to 0.12).

Serum samples from 12 HCs (median age, 42 years; range,
21 to 68 years) and recently diagnosed and/or pretreatment
patients at the NIH Clinical Center were as follows: 17 MGUS
670
[median age, 61 years (range, 38 to 78 years); median
M-spike, 0.65 g/dL (range, 0.3 to 1.3 g/dL); free light chain
analysis for k cases, median k:l Z 1.4 (range, 1.2 to 5.0) and
for l cases, median k:lZ 0.6 (range, 0.29 to 0.82)]; 17 SMM
[median age, 62 years (range, 40 to 81 years); M-spike
median, 2.6 g/dL (range, 1 to 4.5 g/dL); free light chain
analysis for monoclonal k cases k:l Z 26.7 (range, 1.5 to
807) and for l cases, 0.02 (range, 0.01 to 0.78)]; 13 MM
(median age, 58 years [range, 42 to 75 years]; median M-
spike, 2.2 g/dL [range, 1 to 8.6 g/dL]; free light chain
analysis for monoclonal k cases k:l Z 59.3 [range, 4.98
to 468) and for l cases 0.23 (range, <0.01 to 0.66)].
All patients were enrolled on institutional review board-
approved protocols and provided written informed
consent before samples were obtained.
CD138þ Cell Isolation

CD138þ cells were freshly isolated and enriched from 10
MGUS and eight MM patient BM aspirates with the use of
CD138þ selection kits (Miltenyi Biotec Inc., Auburn, CA).
jmd.amjpathol.org - The Journal of Molecular Diagnostics

http://jmd.amjpathol.org


Ctrl 1
Ctrl 2
Ctrl 4
Ctrl 8
Ctrl 9
Ctrl 3
Ctrl 6
Ctrl 7
MM 21
MM 27
MM 26
MM 22
MM 23
MM 24
MM 29
MM 31
MM 32
MM 30
MM 33
MM 2
MM 5
MM 4
MM 3
MM 25
MM 36
MM 28
MM 35
MM 34

Le
t-7

a
m

iR
-5

74
-5

p
m

iR
- 1

5a
m

iR
- 3

01
a

m
iR

- 5
90

-5
p

m
iR

- 1
81

d
m

iR
- 5

48
q

m
iR

- 4
83

-3
p

m
iR

-7
62

m
iR

- 1
18

0
m

iR
- 3

65
*

m
iR

- 1
52

m
iR

- 7
69

-5
p

m
iR

- 2
06

m
iR

-3
70

m
iR

-3
2*

m
iR

- 5
95

m
iR

- 1
99

b-
5p

m
iR

-5
05

*
m

iR
- 5

42
-3

p
m

iR
- 9

9b
*

m
iR

- 1
30

7
m

iR
-1

30
b

m
iR

- 3
20

d
m

iR
- 1

87
m

iR
- 6

71
-5

p
m

iR
-6

27
Le

t-7
i

m
iR

-1
5b

m
iR

-1
7

m
iR

-2
0a

m
iR

-2
23

m
iR

-3
61

-5
p

m
iR

-1
06

b
m

iR
- 1

9b
m

iR
-1

6
m

iR
-2

0b
m

iR
- 1

92
m

iR
-6

60
Le

t-7
b

Le
t-7

c
Le

t-7
d

Le
t-7

f
Le

t-7
g

m
iR

- 2
6b

Le
t-7

e
m

iR
-9

8
m

iR
-1

51
-5

p
m

iR
- 3

31
-3

p
m

iR
- 2

3b
m

iR
-1

99
a-

3p
m

iR
- 1

55
m

iR
- 2

1
m

iR
-2

8-
5p

m
iR

- 1
00

m
iR

-9
9a

m
iR

- 1
0a

m
iR

-3
4a

m
iR

-1
95

m
iR

- 2
14

m
iR

-4
24

m
iR

- 5
51

b
m

iR
-5

42
-3

p
m

iR
- 1

28
1

m
iR

-2
05

*
m

iR
-1

96
a

m
iR

- 2
24

*
m

iR
-3

0a
*

m
iR

- 5
82

-5
p

m
iR

- 6
64

*
Le

t-7
d*

m
iR

-1
23

7
m

iR
-4

84
m

iR
- 1

23
4

m
iR

-1
23

8
m

iR
- 3

28
m

iR
- 1

28
0

m
iR

-1
86

m
iR

-4
86

-5
p

m
iR

-2
22

m
iR

-1
18

2
m

iR
- 1

98
m

iR
- 3

71
-3

p
m

iR
-9

36
m

iR
-6

63
m

iR
- 5

16
b

m
iR

-1
22

8
m

iR
- 1

35
a*

m
iR

- 3
20

c
m

iR
-4

98
m

iR
-1

25
4

m
iR

-1
47

1
m

iR
- 9

40
m

iR
-5

83
m

iR
- 1

18
1

m
iR

-9
39

m
iR

- 3
39

-3
p

m
iR

- 3
0d

m
iR

-5
20

b
m

iR
-1

28
8

m
iR

-6
02

m
iR

- 3
3b

*
m

iR
-5

75
m

iR
- 6

22
m

iR
- 1

26
0

m
iR

- 9
33

m
iR

- 4
49

c*
m

iR
- 1

46
9

m
iR

-1
91

5*
m

iR
-6

65
m

iR
-6

63
b

0 100

Figure 1 Myeloma miRNA signature in the bone
marrow extracellular microenvironment. Heatmap on
the basis of hierarchical clustering of 111 miRNAs
differentially expressed in the bone marrow extra-
cellular microenvironment of MM in comparison with
healthy control marrow as measured by miRNA array
(P < 0.05). Twenty MM and eight control samples
are shown in the heatmap. Ctrl, control; MM, mul-
tiple myeloma.

miRNAs in Marrow and Blood of Myeloma
The average percentage of PCs in the enriched samples was
75.5% (range, 50% to 95%).

RNA Isolation

Total RNA was isolated from 400 mL of BM supernatant fluid,
100 to 200 mL of serum, 50 mL of plasma, and from CD138-
enriched PCs when indicated with the use of miRNeasy Mini
Figure 2 miRNA
myeloma. Scatter pl
MM extracellular BM
as validated by qPC
qPCR, quantitative r
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Kits (Qiagen, Germantown, MD). RNA concentration was
determined with the NanoDrop 2000 instrument (Thermo
Scientific, Wilmington, DE).

Agilent Human miRNA Array

Total RNA (100 ng) and spike-in controls were cyanine
3-cytidine biphosphate-labeled with the Agilent miRNA
s differentially expressed in bone marrow microenvironment of
ots of selected miRNAs that were significantly decreased in the
microenvironment in comparison with healthy control marrow
R. ***P < 0.001. BM, bone marrow; MM, multiple myeloma;
eal-time PCR.
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Table 2 miRNAs Decrease in BM and PB of MM, SMM, and MGUS
as Validated by qPCR

miRNA BM MM PB MM PB SMM PB MGUS

Let-7a X X X
Let-7b X X X
Let-7i X X X X
miR-15a X X X X
miR-15b X X X
miR-16 X X X X
miR-19b X
miR-20a X X X
miR-21 X X
miR-34a X
miR-106b X X X X
miR-155 X
miR-192 X
miR-206 X
miR-223 X X
miR-361 X X
miR-370 X
miR-595 X

X indicates significant difference between healthy controls and disease
groups, P < 0.05.
BM, bone marrow; MGUS, monoclonal gammopathy of undetermined

significance; MM, multiple myeloma; PB, peripheral blood; qPCR, quanti-
tative real-time PCR; SMM, smoldering myeloma.

Wang et al
labeling kit (Agilent Technologies, Palo Alto, CA) according
to the manufacturer’s protocol. Labeled RNA was purified
with Micro Bio-Spin 6 columns (Bio-Rad, Hercules, CA),
dried, and re-dissolved in hybridization buffer and hybridized
on Agilent high-density human miRNA arrays (version 3,
release 12, with 851 human miRNAs on the array) at 56�C
and 20 rpm for 20 hours. After washing, array images were
scanned on Agilent’s G2505C scanner and processed with
Agilent’s Feature Extraction software version 10.7.3.1.

qPCR

Quantitative real-time PCR (qPCR) was used for validation of
miRNA array and miRNA quantitation. For RNA from BM
samples, reverse transcription was performed from 50 ng of
total RNA with pooled TaqMan reverse transcription primers
with the use of High-Capacity cDNA Reverse Transcription
Kit on a GeneAmp PCR system 9700 instrument (Applied
Biosystems, Foster City, CA). TaqMan real-time PCR was
performed in triplicate on a StepOne Plus instrument (Applied
Biosystems). For RNA from PB samples and from CD138þ

cells, qPCRwas performed with a polyadenylation step before
reverse transcription as described previously26 with some
modifications. Briefly, 70 ng of RNA was poly-adenylated
with the use of the poly-(A) polymerase (MCLAB, South
San Francisco, CA) according to the manufacturer’s recom-
mendations. Reverse transcription was conducted with an
anchor primer (Table 1). Real-time PCRwas performed on the
StepOnePlus instrument by using a forward primer (mature
miRNA sequence) and a universal reverse primer and a
672
universal FAM-ZEN-IABKFQ-labeled TaqMan probe (Inte-
grated DNA Technologies, Coralville, IA) (Table 1). A Ct
value of 37 was assigned to miRNAs with undetermined Ct
values. The relative miRNA expression level was calculated as
2�Ct. For miRNA quantitation of RNA isolated from CD138þ

cells, small nuclear or nucleolar RNAs (RNU6, RNU38B,
RNU44, RNU48, RNU66) were amplified and used as internal
controls. The relative miRNA expression level was calculated
as 2�DCt. Primer sequences are included in Table 1.

NanoString nCounter Assay

Gene expression profiling was conducted on purified PCs of
eight MM and five MGUS samples with the use of nanoString
nCounter assay (nanoString Technologies, Seattle, WA)27 with
theHuman Inflammation panel that contained 183 genes related
to signaling pathways important in cell proliferation, apoptosis,
and inflammation. The total RNA (4 mL) from enriched PCs
was hybridized with the capture and reporter probes and incu-
bated overnight at 65�C according to the manufacturer’s rec-
ommended protocol. mRNA was quantified in the nCounter
Digital Analyzer. The data were normalized to the spike-in
controls and to the geometrical mean of six housekeeping
genes in each hybridization reaction.

Statistical Analysis

Data from the Agilent miRNA array were analyzed with Agi-
lent’s GeneSpring GX software version 11.5.1. The array data
were normalized to the data point of 75th percentile signal
strength and to a set of spike-in and control probes on the array,
respectively. The differences between the means of experi-
mental groupswere analyzed by two-tailedMann-Whitney rank
sum test. The miRNAs with significant P value (P� 0.05) and
fold change (at least twofold) in both normalization methods
(75th percentile and control probes) were selected for further
analysis. The signal intensity values and fold changes presented
in figures and supplemental tables are from data normalized by
control gene probes. Raw data and data normalized by control
gene probes were deposited in the Gene Expression Omnibus
database (http://www.ncbi.nlm.nih.gov/geo; accession number
GSE49261). The differences between the means of experi-
mental groups of normalized qPCR assay data were also
analyzed by two-tailed Mann-Whitney rank sum test. P< 0.05
was considered significant. Hierarchical clustering analysis
and heatmap generation were performedwith JMP software
version 11 (SAS Institute, Cary, NC). Scatter plots were
generated with GraphPad Prism software version 6
(GraphPad Software, La Jolla, CA).

Results

Unique miRNA Signature in the Extracellular BM
Microenvironment of Myeloma

To identify miRNAs related to MM that may be shed into
the extracellular BM microenvironment and subsequently
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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Figure 3 miRNAs differentially expressed in the serum of myeloma. Scatter plots
of selected miRNAs significantly differentially expressed in the serum of MM in
comparison with serum of healthy controls as measured by qPCR. **P < 0.01,
***P < 0.001. MM, multiple myeloma; qPCR, quantitative real-time PCR.

miRNAs in Marrow and Blood of Myeloma
released into the PB,miRNA profiling of the extracellular BM
of MM was performed. RNA was isolated from the extra-
cellular supernatant fluid of BM aspirates obtained from 20
patients diagnosed with MM and eight HCs who underwent
BM aspiration. RNA was analyzed on a hybridization-based
high-density miRNA array platform that contained probes for
851 human miRNAs. On the basis of twofold or greater dif-
ference in mean values between controls andMM (P< 0.05),
we identified 111 miRNAs that were significantly differen-
tially expressed in MM (Supplemental Table S1). Among
these, 69 miRNAs were down-regulated and 42 miRNAs
were up-regulated in MM BM. Hierarchical clustering anal-
ysis revealed a unique miRNA signature in MM, which was
distinct from the control marrows (Figure 1). This signature
included eight members of the let-7 family of miRNAs (let-
7a, -7b, -7c, -7d, -7e, -7g, and -7i), which were sixfold to 17-
fold decreased (P < 0.03) in MM BM. Among the MM
signature miRNAs, we chose 26 miRNAs for validation and
further analysis, taking into consideration those miRNAs with
most significant P values, fold changes, and potential targets
by TargetScan analysis. These miRNAs were assayed by
qPCR in RNA samples from BM microenvironment of 18
MM and seven controls. Eighteen miRNAs were validated by
qPCR and were significantly decreased in the MM BM
microenvironment (P < 0.05). The validated miRNAs
included let-7a, let-7b, let-7i, miR-15a, miR-15b, miR-16,
miR-19b, miR-20a, miR-21, miR-34a, miR-106b, miR-155,
miR-192, miR-206, miR-223, miR-361, miR-370, and miR-
595 (Figure 2 and Table 2).
The Journal of Molecular Diagnostics - jmd.amjpathol.org
BM MM miRNA Signature Is Represented in the Serum
of MM Patients

To investigate whether aberrant miRNA profiles detected
in the MM BM microenvironment were also detectable in
the PB serum of MM patients, qPCR with the use of a
poly-Aebased stem-loop method was performed with
RNA isolated from serum samples of 13 MM patients and
12 HCs. The 18 miRNAs, validated and found down-
regulated in BM microenvironment, were assayed in the
serum. Greater than 60% (11 of 18) of the miRNAs demon-
strated significantly decreased serum levels in MM patients in
comparison with controls. These miRNAs included let-7a,
let-7b, let-7i, miR-15a, miR-15b, miR-16, miR-20a, miR-21,
miR-106b, miR-223, and miR-361 (Figure 3 and Table 2).
Hierarchical clustering analysis found that eight miRNAs
(let-7a, let-7b, let-7i, miR-15a, miR-15b, miR-20a, miR-106b,
and miR-361) were capable of distinguishing MM from
controls, forming a miRNA signature of MM in serum
(Supplemental Figure S1).

MM PB miRNA Signature Validation in Plasma of a
Separate Cohort of MM

The spectrum of miRNAs normally present in serum and
plasma is inherently somewhat different because serum con-
tains higher levels of platelet-derived miRNAs released during
the process of coagulation and clot formation.11 Because MM
patients often have thrombocytopenia, it is possible that some
673
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Figure 4 miRNAs differentially expressed in serum of MGUS, SMM, and myeloma. Scatter plots of selected miRNAs differentially detected in peripheral
blood of MGUS, SMM, and (MM) by qPCR. In comparison with the serum of healthy controls, Let-7i, miR-15a, miR-16, and miR-106b are significantly decreased
in serum of MGUS, SMM, and MM; Let-7a, let-7b, miR-15b, and miR-20a are significantly decreased in serum of SMM and MM; and miR-21, miR-223, and miR-
361 are significantly decreased in the serum of MM. Values for MGUS and SMM were not statistically significant. *P < 0.05 compared to control. MGUS,
monoclonal gammopathy of undetermined significance; MM, multiple myeloma; qPCR, quantitative real-time PCR; SMM, smoldering myeloma.

Table 3 Aberrant miRNA Levels in Serum Associated with MGUS,
SMM, MM, and Disease Progression

miRNA PB MGUS PB SMM PB MM

Let-7i X X X
miR-15a X X X
miR-16 X X X
miR-106b X X X
Let-7a X X
Let-7b X X
miR-15b X X
miR-20a X X
miR-21 X
miR-223 X
miR-361 X

X indicates significant difference between healthy controls and the stage
of plasma cell dyscrasia, P < 0.05.
MGUS, monoclonal gammopathy of undetermined significance; MM,

multiple myeloma; SMM, smoldering myeloma.

Wang et al
differences in miRNA profiles between MM and controls in
serum could be related to platelet levels. We sought to
evaluate miRNA signature (let-7a, let-7b, let-7i, miR-15a,
miR-15b, miR-20a, miR-106b, and miR-361) detected in
the MM serum samples in a separate cohort and assay the
miRNAs in plasma. miRNAs were assayed by ABI TaqMan
qPCR in the plasma of a separate cohort of 17 MM patients
and 20 HCs. Among eight signature miRNAs found signifi-
cantly decreased in MM serum samples, six of them (let-7a,
let-7b, let-7i, miR-15a, miR-15b, and miR-20a) were found
significantly decreased in plasma samples of MM patients
(Supplemental Figure S2).

Down-Regulated Expression of a Subset of
MM-Associated miRNAs Is Present in MGUS and
SMM Serum

To determine whethermiRNAs in ourMMsignature may play
a role inMMprecursor disease and disease progression, serum
miRNA analysis was performed in 17 MGUS, 17 SMM, and
13 MM patients and 12 HCs in parallel. The 11 miRNAs,
initially found decreased in MM PB as shown in Figure 3 and
Table 2 (let-7a, let-7b, let-7i, miR-15a, miR-15b, miR-16,
miR-20a, miR-21, miR-106b, miR-223, and miR-361), were
evaluated in MGUS, SMM, MM, and control serum samples.
As expected, all of the 11 miRNAs were decreased in the MM
PB samples on repeat analysis. Interestingly, only 36% (4 of
11) of the miRNAs (let-7i, miR-15a, miR-16, and miR-106b)
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were significantly decreased in MGUS PB, suggesting that
aberrant expression of these miRNAs may be associated with
early events in PC neoplasia (Figure 4 and Table 3). Seventy-
three percent of themiRNAs (8 of 11) were decreased in SMM
(let-7a, let-7b, let-7i, miR-15a, miR-15b, miR-16, miR-106b,
and miR-20a) (Figure 4 and Table 3). Twenty-seven percent
(3 of 11) of the miRNAs (miR-21, miR-223, and miR-361)
were significantly decreased in MM but not in MGUS/
SMM, suggesting that down-regulation of this group of
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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Figure 5 miRNAs differentially expressed in plasma cells of MGUS and myeloma. Scatter plots of selected miRNAs differentially expressed in CD138þ plasma
cells of MGUS and MM. **P < 0.01. MGUS, monoclonal gammopathy of undetermined significance; MM, multiple myeloma.

miRNAs in Marrow and Blood of Myeloma
miRNAs may be related to later events in disease progression
(Figure 4 and Table 3).

CD138þ Plasma Cells from MM Patients Show Similar
miRNA Profile to PB and BM Supernatant Fluid

BM of MM patients typically contains increased CD138þ

monoclonal PCs, which comprise a significant compo-
nent of the cellular marrow (10% to 100%).27,28 In
contrast, healthy BM typically contains <4% of CD138þ

polyclonal PCs.29 Hence, it is extremely difficult to
isolate adequate quantities of CD138þ PCs from healthy
donors as controls for analysis because of low numbers
of PCs in normal control marrow. MGUS BM contains
5% to 9% PCs,29,30 which are relatively easier to isolate
in comparison with HC PCs. Although a subset of the
miRNAs aberrantly expressed in MM BM and PB were
altered in MGUS, there were also a number of miRNAs
in MGUS that were not aberrantly expressed and were
found at levels similar to those seen in HCs.

To determine whether the aberrant miRNA profiles
detected in the BM and PB of MM and not in MGUS are
attributable to malignant MM PCs, CD138þ PCs were
enriched from BM aspirates of 10 MM and 11 MGUS
patients. The levels of 18 miRNAs, found decreased in
MM BM (Table 2), were assessed in CD138þ PCs of
MM and MGUS by qPCR. The results indicated that 14
miRNAs (let-7a, miR-15a, miR-19b, miR-20a, miR-21,
miR-106b, miR-34a, miR-155, miR-192, miR-206, miR-
223, miR-361, miR-370, and miR-595) were significantly
down-regulated in CD138þ PCs of MM compared with
that of MGUS (Figure 5 and Supplemental Table S2).
Among these 14 miRNAs, only 2 miRNAs were signifi-
cantly differentially expressed in the serum of MGUS (miR-
15a and miR-106b), which is in contrast to the serum of MM
whereby 7 of the 14 miRNAs (let-7a, miR-15a, miR-20a,
miR-21, miR-106b, miR-223, and miR-361) found differen-
tial expression, suggesting that the differential miRNA
expression in the serum of MM and MGUS mirrors the
expression patterns in MM and MGUS PCs for many of the
miRNAs assayed.

To further examine the expression of potential targets
that might be affected by altered miRNA levels in
CD138þ cells, the expression of a panel of 184 genes
The Journal of Molecular Diagnostics - jmd.amjpathol.org
(Supplemental Table S3), including genes involved in the
regulation of proliferation, apoptosis, and NF-kB cell
signaling pathways, was examined with the nanoString
nCounter assay platform.31 Thirty-seven of the 184 genes
in the assay exhibited significantly increased expression
in MM PCs (P < 0.05; >twofold) relative to MGUS PCs
(Supplemental Table S4). Many of these genes encode
proteins that regulate cell proliferation, such as ATF2,
HRAS, HDAC4, TGFB1, TGFBR1, and mitogen-activated
protein (MAP) kinases (MAP2K1, MAP2K4, MAP2K6,
MAP3K1, MAP3K5, MAP3K7, MAP3K9, MAPK1,
MAPK8, MAPKAPK2, MAPKAPK5), and transcripts of
these genes are previously validated targets of several
miRNAs found decreased in BM, serum, and malignant
PCs of MM. The validated targets of miR-15b include
(mRNA) MAP2K4 and (mRNA) MAPKAPK5,32 which
were increased 14-fold and twofold, respectively, in MM
PCs. Let-7 family miRNAs target multiple gene tran-
scripts,33,34 which were significantly increased in MM
PCs, including (mRNA) HRAS (9.6-fold increase),
(mRNA) HDAC4 (17-fold increase), (mRNA) TGFB1
(3.4-fold increase), and (mRNA) TGFBR1 (4.6-fold in-
crease). miR-20a and miR-21 also target (mRNA)
TGFB1 and (mRNA) TGFBR1,35e37 underscoring the
significant increase in expression of gene targets of the
miRNAs that were aberrantly decreased in MM.
Discussion

In this study we generated miRNA profiles of the extracel-
lular BM microenvironment of MM, demonstrating a
unique miRNA signature associated with MM that is
partially represented in the serum. Moreover, analysis of
MGUS and SMM suggests that a subset of circulating
aberrant miRNAs (miR-21, miR-223, and miR-361) are
associated with later stages of myelomagenesis and may be
related to malignant transformation from precursor disease
to myeloma. miRNA analysis of purified PCs of MM and
MGUS suggested that differential miRNA expression in the
BM microenvironment and serum of MM and MGUS is
mirrored in PCs, providing further evidence that the aberrant
levels of miRNAs detected in the serum are related to the
disease state of the PC dyscrasia.
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Decreased levels of let-7a, let-7b, and let-7i and miR-15a,
miR-15b, miR-16, miR-20a, miR-21, miR-106b, and miR-
361 were found in both the BM supernatant fluid and the PB
of the MM patients. The let-7 family of miRNAs is expressed
at significantly low levels in human cancer and stem cells on
the basis of previous studies.10,38 Let-7 miRNAs target many
important transcripts of proteins that regulate oncogenesis,
cell cycle, proliferation, and apoptosis, including multiple
oncoproteins (eg, RAS, MYC, and HMGA2) and the
pluripotency-promoting factor LIN28. Interestingly, feed-
back mechanisms exist between let-7 family members and
their targets. For example, MYC also directly regulates let-7
transcription by binding to let-7 promoters. LIN28 inhibits
the processing of primary let-7 miRNAs.33,34 Hence, un-
regulated MYC expression in MM may in part be related to
diminished levels of let-7 miRNAs.

Myelomagenesis is a multistep process.39 This is under-
scored by the fact that MM is consistently preceded by a
precursor disease state of MGUS and/or SMM.40,41 With the
use of conventional cytogenetic analysis, the chromosomal
translocation between the immunoglobulin heavy chain
gene (14q32) and an oncogene (often 11q13, 4p16.3, 6p21,
16q23, and 20q11) is observed in approximately 50% of
MM cases.42,43 Similar distributions are present already in
MGUS and SMM.43,44 These translocations result in over-
expression of oncoproteins that are believed to be critical
initiating events in the pathogenesis of MM.45 MYC over-
expression is associated with progression from MGUS to
MM46,47 and is associated with a poor prognosis.39,48 In our
study, let-7a and let-7b [both regulators of (mRNA) MYC
and regulated by MYC] were decreased only at the SMM
and MM stages in the blood and exhibited normal expres-
sion levels in MGUS. The findings suggest that the pattern
of let-7a and let-7b expression in MM and MGUS may be
related to increased MYC expression in MM and disease
progression. Only let-7i was found decreased at the pre-
cursor disease stage of MGUS, in addition to SMM and
MM, suggesting that some let-7 family miRNAs may play a
role in myelomagenesis in the early stages of PC dyscrasia.

miR-15a/16 cluster targets multiple antiapoptotic proteins or
oncoproteins, such as BCL2, MCL1, CCND1, andWNT3A.49

Decreased expression or deletion of miR-15a and miR-16 was
reported in chronic lymphocytic leukemia, myelodysplastic
syndrome, pituitary adenomas, and prostate carcinoma.10,49e53

We foundmiR-15a andmiR-16 were significantly decreased in
serum samples of MGUS, SMM, and MM. Consistent with
these findings, Roccaro et al18 observed decreased expression
of miR-15a and miR-16 inMM PCs. They found that miR-15a
and miR-16 regulate proliferation through inhibition of AKT
kinase, ribosomal-protein-S6, MAP kinases, and NF-k B
activator MAP3KIP3, and that decreased expression of miR-
15a and miR-16 promoted growth of MM cells in vitro.
These findings suggest a mechanism for the effects of dimin-
ished miR-15a and miR-16 in PC neoplasia. Furthermore,
recent data indicate that the expression of miRNAs are globally
suppressed in MM cells because of hypermethylation of DNA
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in the miRNA regions.54 Similarly, another study found that
miR-155 was down-regulated in MM cell lines and patient
samples because of DNA methylation.55

Previous studies indicated thatmiRNAprocessing enzymes,
Dicer and AGO2, are up-regulated in MGUS and MM,21,56

leading to increased levels of miRNAs in MGUS or MM.
Huang et al25 reported that the overall miRNA levels in MM
blood was higher than in controls, and the levels of miR-148a,
miR-181a, miR-20a, miR-221, andmiR-99b were increased in
the plasma of MM patients. They reported that high levels of
miR-20a and miR-148a were related to shorter relapse-free
survival. In our study, we did not observe a significant differ-
ence in total miRNA levels in blood samples betweenMMand
controls. In addition, we found that miR-20a was decreased in
both BM supernatant fluids and PB of MM patients.
Conclusion

In summary, we found that the levels of let-7a, miR-15a,
miR-20a, miR-21, miR-106b, miR-223, and miR-361 were
decreased in the BM microenvironment, PB, and CD138þ

PCs of MM. Our findings suggest that the antiproliferative
and proapoptotic miRNAs, such as let-7 family members
and miR-15a/16 clusters, are down-regulated in the micro-
environment of MM. Down-regulation of these miRNAs is
detectable in the PB and may parallel disease progression
from the precursor lesion of MGUS to the fully malignant
stage of myeloma. These findings suggest that measuring
the expression of miRNAs associated with myeloma pro-
gression in the PB may hold promise for predicting disease
progression in MGUS and SMM. Further investigations into
the roles of aberrantly expressed miRNAs, found in MM
BM and blood samples, in relation to tumor progression in
MM and precursor diseases is warranted.
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